Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Production of isoprenoid pharmaceuticals by engineered microbes

Abstract

Throughout human history, natural products have been the foundation for the discovery and development of therapeutics used to treat diseases ranging from cardiovascular disease to cancer. Their chemical diversity and complexity have provided structural scaffolds for small-molecule drugs and have consistently served as inspiration for medicinal design. However, the chemical complexity of natural products also presents one of the main roadblocks for production of these pharmaceuticals on an industrial scale. Chemical synthesis of natural products is often difficult and expensive, and isolation from their natural sources is also typically low yielding. Synthetic biology and metabolic engineering offer an alternative approach that is becoming more accessible as the tools for engineering microbes are further developed. By reconstructing heterologous metabolic pathways in genetically tractable host organisms, complex natural products can be produced from inexpensive sugar starting materials through large-scale fermentation processes. In this Perspective, we discuss ongoing research aimed toward the production of terpenoid natural products in genetically engineered Escherichia coli and Saccharomyces cerevisiae.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Transplantation of a biosynthetic pathway from the natural host into a microbial host.
Figure 2: The search for a P450 for the oxidation of amorphadiene.

Similar content being viewed by others

References

  1. Newman, D.J., Cragg, G.M. & Snader, K.M. The influence of natural products upon drug discovery (Antiquity to late 1999). Nat. Prod. Rep. 17, 215–234 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Koehn, F.E. & Carter, G.T. The evolving role of natural products in drug discovery. Nat. Rev. Drug Discov. 4, 206–220 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Newman, D.J., Cragg, G.M. & Snader, K.M. Natural products as sources of new drugs over the period 1981–2002. J. Nat. Prod. 66, 1022–1037 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Horwitz, S.B. How to make taxol from scratch. Nature 367, 593–594 (1994).

    Article  CAS  PubMed  Google Scholar 

  5. McNeil, D.G.J. “Plant shortage leaves campaigns against malaria at risk.” New York Times 14 November 2004.

  6. Khosla, C. & Keasling, J.D. Metabolic engineering for drug discovery and development. Nat. Rev. Drug Discov. 2, 1019–1025 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Glazer, A.N. & Nikaido, H. Microbial Biotechnology: Fundamentals of Applied Microbiology (WH. Freeman and Co., New York, 1995).

    Google Scholar 

  8. Stephanopoulos, G.N., Aristidou, A.A. & Nielsen, J. Metabolic Engineering: Principles and Methodologies (Academic, New York, 1998).

    Google Scholar 

  9. Ensley, B.D. et al. Expression of naphthalene oxidation genes in Escherichia coli results in the biosynthesis of indigo. Science 222, 167–169 (1983).

    Article  CAS  PubMed  Google Scholar 

  10. Mermod, N., Haryama, S. & Timmis, K.N. New route to bacterial production of indigo. Bio/Technology 4, 321–324 (1986).

    CAS  Google Scholar 

  11. Slater, S.C., Voige, W.H. & Dennis, D.E. Cloning and expression in Escherichia coli of the Alcaligenes eutrophus H16 poly-β-hydroxybutyrate biosynthetic pathway. J. Bacteriol. 170, 4431–4436 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Schubert, P., Steinbüchel, A. & Schlegel, H.G. Cloning of the Alcaligenes eutrophus genes for synthesis of poly-β-hydroxybutyric acid (PHB) and synthesis of PHB in Escherichia coli. J. Bacteriol. 170, 5837–5847 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Peoples, O.P. & Sinskey, A.J. Poly-β-hydroxybutyrate (PHB) biosynthesis in Alcaligenes eutrophus H16. Identification and characterization of the PHB polymerase gene (phbC). J. Biol. Chem. 264, 15298–15303 (1989).

    CAS  PubMed  Google Scholar 

  14. Nakamura, C.E. & Whited, G.M. Metabolic engineering for the microbial production of 1,3-propanediol. Curr. Opin. Biotechnol. 14, 454–459 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Hopwood, D.A. et al. Production of 'hybrid' antibiotics by genetic engineering. Nature 314, 642–644 (1985).

    Article  CAS  PubMed  Google Scholar 

  16. Stanzak, R., Matsushima, P., Baltz, R.H. & Rao, R.N. Cloning and expression in Streptomyces lividans of clustered erythromycin biosynthesis genes from Streptomyces erythreus. Bio/Technology 4, 229–232 (1986).

    CAS  Google Scholar 

  17. Tang, L. et al. Cloning and heterologous expression of the epothilone gene cluster. Science 287, 640–642 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Pfeifer, B.A. & Khosla, C. Biosynthesis of polyketides in heterologous hosts. Microbiol. Mol. Biol. Rev. 65, 106–118 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Menzella, H.G. et al. Combinatorial polyketide biosynthesis by de novo design and rearrangement of modular polyketide synthase genes. Nat. Biotechnol. 23, 1171–1176 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Pfeifer, B.A., Admiraal, S.J., Gramajo, H., Cane, D.E. & Khosla, C. Biosynthesis of complex polyketides in a metabolically engineered strain of E. coli. Science 291, 1790–1792 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Lau, J., Tran, C., Licari, P. & Galazzo, J. Development of a high cell-density fed-batch bioprocess for the heterologous production of 6-deoxyerythronolide B in Escherichia coli. J. Biotechnol. 110, 95–103 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Mutka, S.C., Bondi, S.M., Carney, J.R., Da Silva, N.A. & Kealey, J.T. Metabolic pathway engineering for complex polyketide biosynthesis in S. cerevisiae. FEMS Yeast Res. 6, 40–47 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Kealey, J.T., Liu, L., Santi, D.V., Betlach, M.C. & Barr, P.J. Production of a polyketide natural product in nonpolyketide-producing prokaryotic and eukaryotic hosts. Proc. Natl. Acad. Sci. USA 95, 505–509 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Conolly, J.D. & Hill, R.A. Dictionary of Terpenoids (Chapman & Hall, London, 1991).

    Book  Google Scholar 

  25. Harborne, J.B. in Ecological Chemistry and Biochemistry of Plant Terpenoids (eds. Harborne, J.B. & Tomas-Barberan, F.F.) 399–426 (Clarendon Press, Oxford, 1991).

    Google Scholar 

  26. McCaskill, D. & Croteau, R. Prospects for the bioengineering of isoprenoid biosynthesis. Adv. Biochem. Eng. Biotechnol. 55, 107–146 (1997).

    CAS  PubMed  Google Scholar 

  27. Spurgeon, S.L. & Porter, J.W. (eds.) Biosynthesis of Isoprenoid Compounds (Wiley, New York, 1981).

    Google Scholar 

  28. Rohmer, M., Knani, M., Simonin, P., Sutter, B. & Sahm, H. Isoprenoid biosynthesis in bacteria: a novel pathway for the early steps leading to isopentenyl diphosphate. Biochem. J. 295, 517–524 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rohdich, F., Hecht, S., Bacher, A. & Eisenreich, W. Deoxyxylulose phosphate pathway of isoprenoid biosynthesis. Discovery and function of ispDEFGH genes and their cognate enzymes. Pure Appl. Chem. 75, 393–405 (2003).

    Article  CAS  Google Scholar 

  30. Lange, B.M., Rujan, T., Martin, W. & Croteau, R. Isoprenoid biosynthesis: the evolution of two ancient and distinct pathways across genomes. Proc. Natl. Acad. Sci. USA 97, 13172–13177 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Rohdich, F. et al. Studies on the nonmevalonate terpene biosynthetic pathway: metabolic role of IspH (LytB) protein. Proc. Natl. Acad. Sci. USA 99, 1158–1163 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Albrecht, M., Misawa, N. & Sandmann, G. Metabolic engineering of the terpenoid biosynthetic pathway of Escherichia coli for production of the carotenoids β-carotene and zeaxanthin. Biotechnol. Lett. 21, 791–795 (1999).

    Article  CAS  Google Scholar 

  33. Matthews, P.D. & Wurtzel, E.T. Metabolic engineering of carotenoid accumulation in Escherichia coli by modulation of the isoprenoid precursor pool with expression of deoxyxylulose phosphate synthase. Appl. Environ. Microbiol. 53, 396–400 (2000).

    CAS  Google Scholar 

  34. Kim, S.-W. & Keasling, J.D. Metabolic engineering of the nonmevalonate isopentenyl diphosphate synthesis pathway in Escherichia coli enhances lycopene production. Biotechnol. Bioeng. 72, 408–415 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Kajiwara, S., Fraser, P.D., Kondo, K. & Misawa, N. Expression of an exogenous isopentenyl diphosphate isomerase gene enhances isoprenoid biosynthesis in Escherichia coli. Biochem. J. 324, 421–426 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Neudert, U., Martinez-Ferez, I.M., Fraser, P.D. & Sandmann, G. Expression of an active phytoene synthase from Erwinia uredovora and biochemical properties of the enzyme. Biochim. Biophys. Acta 1392, 51–58 (1998).

    Article  CAS  PubMed  Google Scholar 

  37. Wang, C.W., Oh, M.K. & Liao, J.C. Engineered isoprenoid pathway enhances astaxantin production in Escherichia coli. Biotechnol. Bioeng. 62, 235–241 (1999).

    Article  CAS  PubMed  Google Scholar 

  38. Farmer, W.R. & Liao, J.C. Precursor balancing for metabolic engineering of lycopene production in Escherichia coli. Biotechnol. Prog. 17, 57–61 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Farmer, W.R. & Liao, J.C. Improving lycopene production in Escherichia coli by engineering metabolic control. Nat. Biotechnol. 18, 533–537 (2000).

    Article  CAS  PubMed  Google Scholar 

  40. Martin, V.J., Pitera, D.J., Withers, S.T., Newman, J.D. & Keasling, J.D. Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nat. Biotechnol. 21, 796–802 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. Kakinuma, K. et al. New approach to multiply deuterated isoprenoids using triply engineered Escherichia coli and its potential as a tool for mechanistic enzymology. J. Am. Chem. Soc. 123, 1238–1239 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Martin, V.J., Yoshikuni, Y. & Keasling, J.D. The in vivo synthesis of plant sesquiterpenes by Escherichia coli. Biotechnol. Bioeng. 75, 497–503 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Mercke, P., Bengtsson, M., Bouwmeester, H.J., Posthumus, M.A. & Brodelius, P.E. Molecular cloning, expression, and characterization of amorpha-4,11-diene synthase, a key enzyme of artemisinin biosynthesis in Artemisia annua L. Arch. Biochem. Biophys. 381, 173–180 (2000).

    Article  CAS  PubMed  Google Scholar 

  44. Chang, Y.J., Song, S.H., Park, S.H. & Kim, S.U. Amorpha-4,11-diene synthase of Artemisia annua: cDNA isolation and bacterial expression of a terpene synthase involved in artemisinin biosynthesis. Arch. Biochem. Biophys. 383, 178–184 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Newman, J.D. et al. High-level production of amorpha-4,11-diene in a two-phase partitioning bioreactor of metabolically engineered Escherichia coli. Biotechnol. Bioeng. 95, 684–691 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Pitera, D.J., Paddon, C., Newman, J.D. & Keasling, J.D. Rebuilding a balanced heterologous mevalonate pathway for isoprenoid production in Escherichia coli. Metab. Eng. (submitted).

  47. Pfleger, B.F., Pitera, D.J., Smolke, C.D. & Keasling, J.D. Combinatorial engineering of intergenic regions in operons tunes expression of multiple genes. Nat. Biotechnol. 24, 1027–1032 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. Yuan, L.Z., Rouviere, P.E., Larossa, R.A. & Suh, W. Chromosomal promoter replacement of the isoprenoid pathway for enhancing carotenoid production in E. coli. Metab. Eng. 8, 79–90 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Donald, K., Hampton, R. & Fritz, I. Effects of overproduction of the catalytic domain of 3-hydroxy-3-methylglutaryl coenzyme A reductase on squalene synthesis in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 63, 3341–3344 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Polakowski, T., Stahl, U. & Lang, C. Overexpression of a cytosolic hydroxymethylglutaryl-CoA reductase leads to squalene accumulation in yeast. Appl. Microbiol. Biotechnol. 49, 66–71 (1998).

    Article  CAS  PubMed  Google Scholar 

  51. Duport, C., Spagnoli, R., Degryse, E. & Pompon, D. Self-sufficient biosynthesis of pregnenolone and progesterone in engineered yeast. Nat. Biotechnol. 16, 186–189 (1998).

    Article  CAS  PubMed  Google Scholar 

  52. Szczebara, F.M. et al. Total biosynthesis of hydrocortisone from a simple carbon source in yeast. Nat. Biotechnol. 21, 143–149 (2003).

    Article  CAS  PubMed  Google Scholar 

  53. Shimada, H. et al. Increased carotenoid production by the food yeast Candida utilis through metabolic engineering of the isoprenoid pathway. Appl. Environ. Microbiol. 64, 2676–2680 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Szkopinska, A., Swiezewska, E. & Karst, F. The regulation of activity of main mevalonic acid pathway enzymes: farnesyl diphosphate synthase, 3-hydroxy-3-methylglutaryl-CoA reductase, and squalene synthase in yeast S. cerevisiae. Biochem. Biophys. Res. Commun. 267, 473–477 (2000).

    Article  CAS  PubMed  Google Scholar 

  55. Jackson, B.E., Hart-Wells, E.A. & Matsuda, S.P.T. Metabolic engineering to produce sesquiterpenes in yeast. Org. Lett. 5, 1629–1632 (2003).

    Article  CAS  PubMed  Google Scholar 

  56. Ro, D.K. et al. Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440, 940–943 (2006).

    Article  CAS  PubMed  Google Scholar 

  57. DeJong, J.M. et al. Genetic engineering of taxol biosynthetic genes in Saccharomyces cerevisiae. Biotechnol. Bioeng. 93, 212–224 (2006).

    Article  CAS  PubMed  Google Scholar 

  58. Causey, T.B., Zhou, S., Shanmugam, K.T. & Ingram, L.O. Engineering the metabolism of Escherichia coli W3110 for the conversion of sugar to redox-neutral and oxidized products: homoacetate production. Proc. Natl. Acad. Sci. USA 100, 825–832 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Causey, T.B., Shanmugam, K.T., Yomano, L.P. & Ingram, L.O. Engineering Escherichia coli for efficient conversion of glucose to pyruvate. Proc. Natl. Acad. Sci. USA 101, 2235–2240 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Aristidou, A.A., San, K.-Y. & Bennett, G.N. Modification of central metabolic pathway in Escherichia coli to reduce acetate accumulation by heterologous expression of the Bacillus subtilis acetolactate synthase gene. Biotechnol. Bioeng. 44, 944–951 (2004).

    Article  Google Scholar 

  61. Alper, H., Jin, Y.S., Moxley, J.F. & Stephanopoulos, G. Identifying gene targets for the metabolic engineering of lycopene biosynthesis in Escherichia coli. Metab. Eng. 7, 155–164 (2005).

    Article  CAS  PubMed  Google Scholar 

  62. Alper, H., Miyaoku, K. & Stephanopoulos, G. Construction of lycopene-overproducing E. coli strains by combining systematic and combinatorial gene knockout targets. Nat. Biotechnol. 23, 612–616 (2005).

    Article  CAS  PubMed  Google Scholar 

  63. Hemmi, H., Ohnuma, S., Nagaoka, K. & Nishino, T. Identification of genes affecting lycopene formation in Escherichia coli transformed with carotenoid biosynthetic genes: candidates for early genes in isoprenoid biosynthesis. J. Biochem. 123, 1088–1096 (1998).

    Article  CAS  PubMed  Google Scholar 

  64. Varma, A. & Palsson, B.O. Metabolic flux balancing: basic concepts, scientific and practical use. Bio/Technology 12, 994–998 (1994).

    Article  CAS  Google Scholar 

  65. Stephanopoulos, G. Metabolic fluxes and metabolic engineering. Metab. Eng. 1, 1–11 (1999).

    Article  CAS  PubMed  Google Scholar 

  66. Fischer, E. & Sauer, U. Metabolic flux profiling of Escherichia coli mutants in central carbon metabolism using GC-MS. Eur. J. Biochem. 270, 880–891 (2003).

    Article  CAS  PubMed  Google Scholar 

  67. Sauer, U. High-throughput phenomics: experimental methods for mapping fluxomes. Curr. Opin. Biotechnol. 15, 58–63 (2004).

    Article  CAS  PubMed  Google Scholar 

  68. Bayer, T.S. & Smolke, C.D. Programmable ligand-controlled riboregulators of eukaryotic gene expression. Nat. Biotechnol. 23, 337–343 (2005).

    Article  CAS  PubMed  Google Scholar 

  69. Bennett, M.D. & Smith, J.B. Nuclear DNA amounts in angiosperms. Philos. Trans. R. Soc. Lond. B Biol. Sci. 274, 227–274 (1976).

    Article  CAS  PubMed  Google Scholar 

  70. Yoshikuni, Y., Martin, V.J., Ferrin, T.E. & Keasling, J.D. Engineering cotton (+)-δ-cadinene synthase to an altered function: germacrene D-4-ol synthase. Chem. Biol. 13, 91–98 (2006).

    Article  CAS  PubMed  Google Scholar 

  71. Yoshikuni, Y., Ferrin, T.E. & Keasling, J.D. Designed divergent evolution of enzyme function. Nature 440, 1078–1082 (2006).

    Article  CAS  PubMed  Google Scholar 

  72. Cirino, P.C. & Arnold, F.A. Protein engineering of oxygenases for biocatalysis. Curr. Opin. Chem. Biol. 6, 130–135 (2002).

    Article  CAS  PubMed  Google Scholar 

  73. Sowden, R.J., Yasmin, S., Rees, N.H., Bell, S.G. & Wong, L.L. Biotransformation of the sesquiterpene (+)-valencene by cytochrome P450cam and P450BM-3. Org. Biomol. Chem. 3, 57–64 (2005).

    Article  CAS  PubMed  Google Scholar 

  74. Wani, M.C., Taylor, H.L., Wall, M.E., Coggon, P. & McPhail, A.T. Plant antitumor agents. VI. The isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. J. Am. Chem. Soc. 93, 2325–2327 (1971).

    Article  CAS  PubMed  Google Scholar 

  75. Jennewein, S., Wildung, M.R., Chau, M., Walker, K. & Croteau, R. Random sequencing of an induced Taxus cell cDNA library for identification of clones involved in taxol biosynthesis. Proc. Natl. Acad. Sci. USA 101, 9149–9154 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Wildung, M.R. & Croteau, R. A cDNA clone for taxadiene synthase, the diterpene cyclase that catalyzes the committed step of taxol biosynthesis. J. Biol. Chem. 271, 9201–9204 (1996).

    Article  CAS  PubMed  Google Scholar 

  77. Walker, K. & Croteau, R. Molecular cloning of a 10-deacetylbaccatin III-10-O-acetyl transferase cDNA from Taxus and functional expression in Escherichia coli. Proc. Natl. Acad. Sci. USA 97, 583–587 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Walker, K. & Croteau, R. Taxol biosynthesis: molecular cloning of a benzoyl-CoA:taxane 2α-O-benzoyltransferase cDNA from Taxus and functional expression in Escherichia coli. Proc. Natl. Acad. Sci. USA 97, 13591–13596 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Walker, K., Schoendorf, A. & Croteau, R. Molecular cloning of a taxa-4(20),11(12)-dien-5α-ol-O-acetyl transferase cDNA from Taxus and functional expression in Escherichia coli. Arch. Biochem. Biophys. 374, 371–380 (2000).

    Article  CAS  PubMed  Google Scholar 

  80. Schoendorf, A., Rithner, C.D., Williams, R.M. & Croteau, R.B. Molecular cloning of a cytochrome P450 taxane 10β-hydroxylase cDNA from Taxus and functional expression in yeast. Proc. Natl. Acad. Sci. USA 98, 1501–1506 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Jennewein, S., Rithner, C.D., Williams, R.M. & Croteau, R. Taxol biosynthesis: taxane 13α-hydroxylase is a cytochrome P450-dependent monooxygenase. Proc. Natl. Acad. Sci. USA 98, 13595–13600 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Jennewein, S., Long, R.M., Williams, R.M. & Croteau, R. Cytochrome P450 taxadiene 5α-hydroxylase, a mechanistically unusual monooxygenase catalyzing the first oxygenation step of taxol biosynthesis. Chem. Biol. 11, 379–387 (2004).

    Article  CAS  PubMed  Google Scholar 

  83. Chau, M., Jennewein, S., Walker, K. & Croteau, R. Taxol biosynthesis: molecular cloning and characterization of a cytochrome P450 taxoid 7β-hydroxylase. Chem. Biol. 11, 663–672 (2004).

    CAS  PubMed  Google Scholar 

  84. Chau, M. & Croteau, R. Molecular cloning and characterization of a cytochrome P450 taxoid 2α-hydroxylase involved in taxol biosynthesis. Arch. Biochem. Biophys. 427, 48–57 (2004).

    Article  CAS  PubMed  Google Scholar 

  85. Walker, K., Long, R. & Croteau, R. The final acylation step in taxol biosynthesis: cloning of the taxoid C13-side chain N-benzoyltransferase. Proc. Natl. Acad. Sci. USA 99, 9166–9171 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Walker, K.D., Klettke, K., Akiyama, T. & Croteau, R. Cloning, heterologous expression, and characterization of a phenylalanine aminomutase involved in taxol biosynthesis. J. Biol. Chem. 279, 53947–53954 (2004).

    Article  CAS  PubMed  Google Scholar 

  87. Huang, Q., Roessner, C.A., Croteau, R. & Scott, A.I. Engineering Escherichia coli for the synthesis of taxadiene, a key intermediate in the biosynthesis of taxol. Bioorg. Med. Chem. 9, 2237–2242 (2001).

    Article  CAS  PubMed  Google Scholar 

  88. Hefner, J., Ketchum, R.E.B. & Croteau, R. Cloning and functional expression of a cDNA encoding geranylgeranyl diphosphate synthase from Taxus canadensis and assessment of the role of this prenyltransferase in cells induced for Taxol production. Arch. Biochem. Biophys. 360, 62–74 (1998).

    Article  CAS  PubMed  Google Scholar 

  89. Korenromp, E., Miller, J., Nahlen, B., Wardlaw, T. & Young, M. World Malaria Report 2005 (World Health Organization, Roll Back Malaria, Geneva, 2005).

  90. Dhingra, V. & Narasu, M.L. Purification and characterization of an enzyme involved in biochemical transformation of arteannuin B to artemisinin from Artemisia annua. Biochem. Biophys. Res. Commun. 281, 558–561 (2001).

    Article  CAS  PubMed  Google Scholar 

  91. Wallaart, T.E. et al. Isolation and identification of dihydroartemisinic acid from Artemisia annua and its possible role in the biosynthesis of artemisinin. J. Nat. Prod. 62, 430–433 (1999).

    Article  CAS  PubMed  Google Scholar 

  92. Roth, R.J. & Acton, N. A simple conversion of artemisinic acid into artemisinin. J. Nat. Prod. 52, 1183–1185 (1989).

    Article  CAS  PubMed  Google Scholar 

  93. Bertea, C.M. et al. Identification of intermediates and enzymes involved in the early steps of artemisinin biosynthesis in Artemisia annua. Planta Med. 71, 40–47 (2005).

    Article  CAS  PubMed  Google Scholar 

  94. Schuler, M.A. & Werck-Reichhart, D. Functional genomics of P450s. Annu. Rev. Plant Biol. 54, 629–667 (2003).

    Article  CAS  PubMed  Google Scholar 

  95. Teoh, K.H., Polichuk, D.R., Reed, D.W., Nowak, G. & Covello, P.S. Artemisia annua L. (Asteraceae) trichome-specific cDNAs reveal CYP71AV1, a cytochrome P450 with a key role in the biosynthesis of the antimalarial sesquiterpene lactone artemisinin. FEBS Lett. 580, 1411–1416 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank D. Pitera, E. Paradise and D.-K. Ro for helpful discussions. M.C.Y.C acknowledges a postdoctoral fellowship from the Jane Coffin Childs Memorial Fund. Isoprenoid research in the Keasling laboratory has been funded by the University of California Discovery Grant Program, the US National Science Foundation, Maxygen, Diversa and the Bill & Melinda Gates Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jay D Keasling.

Ethics declarations

Competing interests

Jay Keasling is a founder of Amyris Biotechnologies, a company that may eventually use the gene and engineered yeast described in the publication Nature 440, 940-943 (2006) to produce artemisinin. However, neither Amyris Biotechnologies nor the University of California will make any profit from the production and sale of artemisinin, the anti-malarial drug.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, M., Keasling, J. Production of isoprenoid pharmaceuticals by engineered microbes. Nat Chem Biol 2, 674–681 (2006). https://doi.org/10.1038/nchembio836

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio836

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing