Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Drug discovery and development for neglected parasitic diseases

Abstract

Diseases caused by tropical parasites affect hundreds of millions of people worldwide but have been largely neglected for drug development because they affect poor people in poor regions of the world. Most of the current drugs used to treat these diseases are decades old and have many limitations, including the emergence of drug resistance. This review will summarize efforts to reinvigorate the drug development pipeline for these diseases, which is driven in large part by support from major philanthropies. The organisms responsible for these diseases have a fascinating biology, and many potential biochemical targets are now apparent. These neglected diseases present unique challenges to drug development that are being addressed by new consortia of scientists from academia and industry.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

References

  1. McKerrow, J.H. Designing drugs for parasitic diseases of the developing world. PLoS Med. 2, e210 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Lipinski, C.A., Lombardo, F., Dominy, B.W. & Feeney, P.J. Experimenal and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 23, 3–25 (1997).

    Article  CAS  Google Scholar 

  3. Wang, C.C. Validating targets for antiparasite chemotherapy. Parasitology 114 (suppl.), S31–S44 (1997).

    PubMed  Google Scholar 

  4. Mackey, Z.B., O'Brien, T.C., Greenbaum, D.C., Blank, R.B. & McKerrow, J.H. A cathepsin B-like protease is required for host protein degradation in Trypanosoma brucei. J. Biol. Chem. 279, 48426–48433 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Bogyo, M., Verhelst, S., Bellingard-Dubouchaud, V., Toba, S. & Greenbaum, D. Selective targeting of lysosomal cysteine proteases with radiolabeled electrophilic substrate analogs. Chem. Biol. 7, 27–38 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Knight, Z.A. & Shokat, K.M. Features of selective kinase inhibitors. Chem. Biol. 12, 621–637 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Engel, J.C. et al. Cysteine protease inhibitors alter Golgi complex ultrastructure and function in Trypanosoma cruzi. J. Cell Sci. 111, 597–606 (1998).

    CAS  PubMed  Google Scholar 

  8. McCann, P.P. & Pegg, A.E. Ornithine decarboxylase as an enzyme target for therapy. Pharmacol. Ther. 54, 195–215 (1992).

    Article  CAS  PubMed  Google Scholar 

  9. Werbovetz, K.A., Brendle, J.J., Boykin, D.W. & Stephens, C.E. Reversed amidines and methods of using them for treating, preventing, or inhibiting leishmaniasis. WO patent application 2002/036588 (2002).

  10. Aschenbrenner, A. et al. Derivatives of diphenylurea, diphenyloxalic acid diamide and diphenylsulfuric acid diamide and their use as medicaments. WO patent application 2002070467 (2002).

  11. Aschenbrenner, A. et al. Preparation of N-amidinophenyl-N'-sulfamoylphenylureas and related compounds for the treatment of protozoal diseases and as inhibitors of intracellular protein degradation pathways. US patent application 2003119876 (2003).

  12. Werbovetz, K., Franzblau, S.G., Tidwell, R.R., Bakunova, S. & Bakunov, S. Cationic substituted benzofurans as antimicrobial agents. WO patent application 2005/055935 (2005).

  13. Tidwell, R.R., Boykin, D., Brun, R., Stephens, C.E. & Kumar, A. Preparation of novel amidines for treating microbial infections like human African trypanosomiasis and falciparum malaria. WO patent application 2005/033065 (2005).

  14. Boykin, D.W., Tidwell, R.R., Ismail, M.A. & Brun, R. Preparation of dicationic 2,5-diarylfuran aza-analogs as anti-protozoan agents. WO patent application 2004/050018 (2004).

  15. Boykin, D.W. et al. Preparation of fused ring dicationic antiprotozoals and prodrugs thereof. WO patent application 2005/051296 (2005).

  16. Brendle, J.J. et al. Antileishmanial activities of several classes of aromatic dications. Antimicrob. Agents Chemother. 46, 797–807 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Athri, P. et al. 3D QSAR on a library of heterocyclic diamidine derivatives with antiparasitic activity. Bioorg. Med. Chem. 14, 3144–3152 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Dardonville, C. et al. DNA binding affinity of bisguanidine and bis(2-aminoimidazoline) derivatives with in vivo antitrypanosomal activity. J. Med. Chem. 49, 3748–3752 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Boykin, D.W., Kumar, A., Hall, J.E., Bender, B.C. & Tidwell, R.R. Anti-pneumocystis activity of bisamidoximes and bis-O-alkylamidoximes prodrugs. Bioorg. Med. Chem. Lett. 6, 3017–3020 (1996).

    Article  CAS  Google Scholar 

  20. Mayence, A. et al. Parallel solution-phase synthesis of conformationally restricted congeners of pentamidine and evaluation of their antiplasmodial activities. J. Med. Chem. 47, 2700–2705 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Rahmathullah, S.M. et al. Prodrugs for amidines: synthesis and anti-Pneumocystis carinii activity of aarbamates of 2,5-bis(4-amidinophenyl)furan. J. Med. Chem. 42, 3994–4000 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Zhou, L. et al. Enhanced permeability of the antimicrobial agent 2,5-bis(4-amidinophenyl)furan across Caco-2 cell monolayers via its methylamidoidme prodrug. Pharm. Res. 19, 1689–1695 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Sturk, L.M., Brock, J.L., Bagnell, C.R., Hall, J.E. & Tidwell, R.R. Distribution and quantitation of the anti-trypanosomal diamidine 2,5-bis(4-amidinophenyl)furan (DB75) and its N-methoxy prodrug DB289 in murine brain tissue. Acta Trop. 91, 131–143 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Berman, J.D. et al. Efficacy and safety of liposomal amphotericin B (AmBisome) for visceral leishmaniasis in endemic developing countries. Bull. World Health Organ. 76, 25–32 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Gibbs, W.J., Drew, R.H. & Perfect, J.R. Liposomal amphotericin B: clinical experience and perspectives. Expert Rev. Anti Infect. Ther. 3, 167–181 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Schweitzer, B.I., Dicker, A.P. & Bertino, J.R. Dihydrofolate reductase as a therapeutic target. FASEB J. 4, 2441–2452 (1990).

    Article  CAS  PubMed  Google Scholar 

  27. Ivanetich, K.M. & Santi, D.V. Thymidylate synthase-dihydrofolate reductase in protozoa. Exp. Parasitol. 70, 367–371 (1990).

    Article  CAS  PubMed  Google Scholar 

  28. Knighton, D.R. et al. Structure of and kinetic channelling in bifunctional dihydrofolate reductase-thymidylate synthase. Nat. Struct. Biol. 1, 186–194 (1994).

    Article  CAS  PubMed  Google Scholar 

  29. Zuccotto, F., Brun, R., Gonzalez Pacanowska, D., Ruiz Perez, L.M. & Gilbert, I.H. The structure-based design and synthesis of selective inhibitors of Trypanosoma cruzi dihydrofolate reductase. Bioorg. Med. Chem. Lett. 9, 1463–1468 (1999).

    Article  CAS  PubMed  Google Scholar 

  30. Zuccotto, F. et al. Novel inhibitors of Trypanosoma cruzi dihydrofolate reductase. Eur. J. Med. Chem. 36, 395–405 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Chowdhury, S.F. et al. Novel inhibitors of leishmanial dihydrofolate reductase. Bioorg. Med. Chem. Lett. 11, 977–980 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Gilbert, I.H. Inhibitors of dihydrofolate reductase in Leishmania and trypanosomes. Biochim. Biophys. Acta 1587, 249–257 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. Nare, B., Hardy, L.W. & Beverley, S.M. The roles of pteridine reductase 1 and dihydrofolate reductase-thymidylate synthase in pteridine metabolism in the protozoan parasite Leishmania major. J. Biol. Chem. 272, 13883–13891 (1997).

    Article  CAS  PubMed  Google Scholar 

  34. Sirawaraporn, W. et al. Selective inhibition of Leishmania dihydrofolate reductase and Leishmania growth by 5-benzyl-2,4-diaminopyrimidines. Mol. Biochem. Parasitol. 31, 79–85 (1988).

    Article  CAS  PubMed  Google Scholar 

  35. Chowdhury, S.F. et al. Design, synthesis, and evaluation of inhibitors of trypanosomal and leishmanial dihydrofolate reductase. J. Med. Chem. 42, 4300–4312 (1999).

    Article  CAS  PubMed  Google Scholar 

  36. Pez, D. et al. 2,4-Diaminopyrimidines as inhibitors of leishmanial and trypanosomal dihydrofolate reductase. Bioorg. Med. Chem. 11, 4693–4711 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Hidalgo-Zarco, F. & Gonzalez-Pazanowska, D. Trypanosomal dUTPases as potential targets for drug design. Curr. Protein Pept. Sci. 2, 389–397 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Stout, C.D. Induced fit, drug design, and dUTPase. Structure 12, 2–3 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Whittingham, J.L. et al. dUTPase as a platform for antimalarial drug design: structural basis for the selectivity of a class of nucleoside inhibitors. Structure 13, 329–338 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Hofer, A., Steverding, D., Chabes, A., Brun, R. & Thelander, L. Trypanosoma brucei CTP synthetase: a target for the treatment of African sleeping sickness. Proc. Natl. Acad. Sci. USA 98, 6412–6416 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sajid, M. & McKerrow, J.H. Review: cysteine proteases of parasitic organisms. Mol. Biochem. Parasitol. 120, 1–21 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. Semenov, A., Olson, J.E. & Rosenthal, P.J. Antimalarial synergy of cysteine and aspartic protease inhibitors. Antimicrob. Agents Chemother. 42, 2254–2258 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Klemba, M. & Goldberg, D.E. Biological roles of proteases in parasitic protozoa. Annu. Rev. Biochem. 71, 275–305 (2002).

    Article  CAS  PubMed  Google Scholar 

  44. Chibale, K., Greenbaum, D.C. & McKerrow, J.H. Thiosemicarbazones and other compounds as antiparasitic compounds, their preparation, and methods of their use. WO patent application 2005/087211 (2005).

  45. Du, X. et al. Synthesis and structure-activity relationship study of potent trypanocidal thio semicarbazone inhibitors of the trypanosomal cysteine protease cruzain. J. Med. Chem. 45, 2695–2707 (2002).

    Article  CAS  PubMed  Google Scholar 

  46. Selzer, P.M. et al. Cysteine protease inhibitors as chemotherapy: lessons from a parasite target. Proc. Natl. Acad. Sci. USA 96, 11015–11022 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Abdulla, M.-H., Lim, K.C., Sajid, M., McKerrow, J.H. & Caffrey, C.R. Schistosomiasis mansoni: novel chemotherapy using a cysteine protease inhibitor. PLoS Med. (in the press).

  48. Burleigh, B.A. & Andrews, N.W. The mechanisms of Trypanosoma cruzi invasion of mammalian cells. Annu. Rev. Microbiol. 49, 175–200 (1995).

    Article  CAS  PubMed  Google Scholar 

  49. Salter, J.P. et al. Cercarial elastase is encoded by a functionally conserved gene family across multiple species of schistosomes. J. Biol. Chem. 277, 24618–24624 (2002).

    Article  CAS  PubMed  Google Scholar 

  50. Eggleson, K.K., Duffin, K.L. & Goldberg, D.E. Identification and characterization of falcilysin, a metallopeptidase involved in hemoglobin catabolism within the malaria parasite Plasmodium falciparum. J. Biol. Chem. 274, 32411–32417 (1999).

    Article  CAS  PubMed  Google Scholar 

  51. Madrid, P.B., Liou, A.P., DeRisi, J.L. & Guy, R.K. Incorporation of an intramolecular hydrogen-bonding motif in the side chain of 4-aminoquinolines enhances activity against drug-resistant P. falciparum. J. Med. Chem. 49, 4535–4543 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Krogstad, D.J. & De, D. Chloroquine analogs, their preparation, and methods of preventing and treating plasmodial disease. WO patent application 96/40138 (1996).

  53. De, D., Krogstad, F.M., Byers, L.D. & Krogstad, D.J. Structure-activity relationships for antiplasmodial activity among 7-substituted 4-aminoquinolines. J. Med. Chem. 41, 4918–4926 (1998).

    Article  CAS  PubMed  Google Scholar 

  54. Ramanathan-Girish, S. et al. Pharmacokinetics of the antimalarial drug, AQ-13, in rats and cynomolgus macaques. Int. J. Toxicol. 23, 179–189 (2004).

    Article  CAS  PubMed  Google Scholar 

  55. Park, B.K., O'Neill, P.M., Ward, S.A. & Stocks, P.A. Preparation of anilino-quninolines as anti-malarial compounds. WO patent application 2002/072554 (2002).

  56. Jain, R. et al. Ring-substituted 8-aminoquinoline analogs as antimalarial agents and process for their preparation. WO patent application 2004/085402 (2004).

  57. Pratap, R. et al. Method for the treatment of malaria by the use of primaquine derivative N1-(3-ethylidinotetrahydrofuran-2-one)-N4-(6-methoxy-8-quinolinyl)-1,4-pentanediamine as gametocytocidal agent. US patent application 2003199697 (2003).

  58. Sparatore, A. et al. Preparation of quinolizidinylalkylaminoquinolines as antimalarials. WO patent application 2005/037833 (2005).

  59. Meunier, B., Robert, A., Dechy-Cabaret, O. & Benoit-Vical, F. Preparation of compounds which contain a 1,2,4-trioxane moiety linked to a quinoline moiety for pharmaceutical use as antimalarial agents. WO patent application 2001/077105 (2001).

  60. Bathurst, I. & Hentschel, C. Medicines for Malaria Venture: sustaining antimalarial drug development. Trends Parasitol. 22, 301–307 (2006).

    Article  PubMed  Google Scholar 

  61. Haynes, R.K. et al. Highly antimalaria-active artemisinin derivatives: biological activity does not correlate with chemical reactivity. Angew. Chem. Int. Edn. Engl. 43, 1381–1385 (2004).

    Article  CAS  Google Scholar 

  62. Cumming, J.N., Ploypradith, P. & Posner, G.H. Antimalarial activity of artemisinin (qinghaosu) and related trioxanes: mechanism(s) of action. Adv. Pharmacol. 37, 253–297 (1997).

    Article  CAS  PubMed  Google Scholar 

  63. Wu, Y. How might qinghaosu (artemisinin) and related compounds kill the intraerythrocytic malaria parasite? A chemist's view. Acc. Chem. Res. 35, 255–259 (2002).

    Article  CAS  PubMed  Google Scholar 

  64. Krishna, S., Uhlemann, A.-C. & Haynes, R.K. Artemisinins: mechanisms of action and potential for resistance. Drug Resist. Updat. 7, 233–244 (2004).

    Article  CAS  PubMed  Google Scholar 

  65. Eckstein-Ludwig, U. et al. Artemisinins target the SERCA of Plasmodium falciparum. Nature 424, 957–961 (2003).

    Article  CAS  PubMed  Google Scholar 

  66. O'Neill, P.M. et al. Enantiomeric 1,2,4-trioxanes display equivalent in vitro antimalarial activity versus Plasmodium falciparum malaria parasites: implications for the molecular mechanism of action of the artemisinins. ChemBioChem 6, 2048–2054 (2005).

    Article  CAS  PubMed  Google Scholar 

  67. O'Neill, P.M. & Posner, G.H. A medicinal chemistry perspective on artemisinin and related endoperoxides. J. Med. Chem. 47, 2945–2964 (2004).

    Article  CAS  PubMed  Google Scholar 

  68. Haynes, R.K. et al. Convenient access both to highly antimalaria-active 10-arylaminoartemisinins, and to 10-alkyl ethers including artemether, arteether, and artelinate. ChemBioChem 6, 659–667 (2005).

    Article  CAS  PubMed  Google Scholar 

  69. Haynes, R.K., Lam, W.-L., Chan, H.-W. & Tsang, H.-W. Preparation of artemisinin derivatives for treating malaria, neosporosis and coccidiosis. European patent application 974354 (2000).

  70. O'Neill, P.M., Higson, A.P., Taylor, S. & Irving, E. Preparation of dihydroartemisinin derivatives as antimalarial and antitumor agents. WO patent application 2003/048167 (2003).

  71. Posner, G.H. et al. Orally active, hydrolytically stable, semisynthetic, antimalarial trioxanes in the artemisinin family. J. Med. Chem. 42, 300–304 (1999).

    Article  CAS  PubMed  Google Scholar 

  72. O'Neill, P.M. et al. Novel, potent, semisynthetic antimalarial carba analogues of the first-generation 1,2,4-trioxane artemether. J. Med. Chem. 42, 5487–5493 (1999).

    Article  CAS  PubMed  Google Scholar 

  73. Begue, J.-P. et al. Preparation of novel artemisinin derivatives and their use for treating malaria. WO patent application 2003/035651 (2003).

  74. Hindley, S. et al. Mechanism-based design of parasite-targeted artemisinin derivatives: synthesis and antimalarial activity of new diamine containing analogues. J. Med. Chem. 45, 1052–1063 (2002).

    Article  CAS  PubMed  Google Scholar 

  75. Posner, G.H. et al. Preparation of orally active, antimalarial, anticancer, artemisinin-derived trioxane dimers with high selectivity, stability and efficacy. WO patent application 2004/028476 (2004).

  76. O'Neill, P.M., Higson, A.P., Taylor, S. & Irving, E. Preparation of dihydroartemisinin derivatives as antimalarial and anticancer agents. WO patent application 2003/048168 (2003).

  77. Mahmoud, A.E. & Waseem, G. Preparation of anticancer and antiprotozoal dihydroartemisinene and dihydroartemisitene dimers with desirable chemical functionalities. WO patent application 2006/002105 (2006).

  78. Haynes, R.K. & Lam, W.-L. Preparation of artemisinin derivatives as antiparasitic agents. European patent application 974593 (2000).

  79. Avery, M.A. & Muraleedharan, K.M. Preparation of artemisinin-based peroxide compounds as broad spectrum anti-infective agents. WO patent application 2003/095444 (2003).

  80. Haynes, R.K., Chan, H.-W., Lam, W.-L., Tsang, H.-W. & Cheung, M.-K. Synthesis and antiparasitic activity of artemisinin derivatives (endoperoxides). WO patent application 2000/004024 (2000).

  81. Haynes, R.K. Preparation of antiparasitic artemisinin derivatives (sesquiterpene endoperoxides). WO patent application 2003/076446 (2003).

  82. Haynes, R.K. et al. Artemisone - a highly active antimalarial drug of the artemisinin class. Angew. Chem. Int. Ed. 45, 2082–2088 (2006).

    Article  CAS  Google Scholar 

  83. Medicines for Malaria Venture. Curing malaria together: annual report 2005. Medicines for Malaria Venture http://www.mmv.org/IMG/pdf/full_report.pdf (2005).

  84. Posner, G.H. et al. Orally active antimalarial 3-substituted trioxanes: new synthetic methodology and biological evaluation. J. Med. Chem. 41, 940–951 (1998).

    Article  CAS  PubMed  Google Scholar 

  85. Singh, C., Malik, H. & Puri, S.K. Orally active 1,2,4-trioxanes: synthesis and antimalarial assessment of a new series of 9-functionalized 3-(1-arylvinyl)-1,2,5-trioxaspiro[5.5]undecanes against multi-drug-resistant Plasmodium yoelii nigeriensis in mice. J. Med. Chem. 49, 2794–2803 (2006).

    Article  CAS  PubMed  Google Scholar 

  86. Tripathi, R., Jefford, C.W. & Dutta, G.P. Blood schizontocidal activity of selected 1,2,4-trioxanes (fenozans) against the multidrug-resistant strain of Plasmodium yoelii nigeriensis (MDR) in vivo. Parasitology 133, 1–9 (2006).

    Article  CAS  PubMed  Google Scholar 

  87. Vennerstrom, J.L., Dong, Y., Chollet, J. & Matile, H. Preparation of spiro/dispiro-1,2,4-trioxolanes as antimalarial agents. US patent 6,486,199 (2002).

  88. Vennerstrom, J.L. et al. Preparation of spiro- and dispiro-1,2,4-trioxolanes as antimalarial agents, schistosomicides, and anticancer agents. US patent application 2004039008 (2004).

  89. Vennerstrom, J.L. et al. Identification of an antimalarial synthetic trioxolane drug development candidate. Nature 430, 900–904 (2004).

    Article  CAS  PubMed  Google Scholar 

  90. Dong, Y. et al. Spiro and dispiro-1,2,4-trioxolanes as antimalarial peroxides: charting a workable structure-activity relationship using simple prototypes. J. Med. Chem. 48, 4953–4961 (2005).

    Article  CAS  PubMed  Google Scholar 

  91. Vennerstrom, J.L. et al. Synthesis and antimalarial activity of sixteen dispiro-1,2,4, 5-tetraoxanes: alkyl-substituted 7,8,15,16-tetraoxadispiro[5.2.5. 2]hexadecanes. J. Med. Chem. 43, 2753–2758 (2000).

    Article  CAS  PubMed  Google Scholar 

  92. Kim, H.S. et al. Synthesis and antimalarial activity of novel medium-sized 1,2,4,5-tetraoxacycloalkanes. J. Med. Chem. 44, 2357–2361 (2001).

    Article  CAS  PubMed  Google Scholar 

  93. Posner, G.H. et al. Antimalarial cyclic peroxy ketals. J. Med. Chem. 41, 2164–2167 (1998).

    Article  CAS  PubMed  Google Scholar 

  94. Hofheinz, W. et al. Ro 42–1611 (arteflene), a new effective antimalarial: chemical structure and biological activity. Trop. Med. Parasitol. 45, 261–265 (1994).

    CAS  PubMed  Google Scholar 

  95. Bachi, M.D. et al. A short synthesis and biological evaluation of potent and nontoxic antimalarial bridged bicyclic β-sulfonyl-endoperoxides. J. Med. Chem. 46, 2516–2533 (2003).

    Article  CAS  PubMed  Google Scholar 

  96. O'Neill, P.M. et al. Design and synthesis of endoperoxide antimalarial prodrug models. Angew. Chem. Int. Ed. 43, 4193–4197 (2004).

    Article  CAS  Google Scholar 

  97. Posner, G.H. et al. Orally active antimalarial 3-substituted trioxanes: new synthetic methodology and biological evaluation. J. Med. Chem. 41, 940–951 (1998).

    Article  CAS  PubMed  Google Scholar 

  98. Posner, G.H., Parker, M.H., Krasavin, M. & Shapiro, T.A. Synthesis and activity of water-soluble trioxanes as potent and safe antimalarial agents. WO patent application 2000/059501 (2000).

  99. Singh, C., Tiwari, P. & Puri, S.K. Novel substituted 1,2,4-trioxanes useful as antimalarial agents and a process for the preparation thereof. WO patent application 2003082852 (2003).

  100. O'Neill, P.M., Amewu, R., Mukhtar, A. & Ward, S.A. 1,2,4-Trioxanes and 1,2,4-trioxepanes useful as antimalarial and anticancer agents, and their pharmaceutical compositions, use, and preparation via the thiol-olefin co-oxygenation (TOCO) reaction. US patent application 2005256184 (2005).

  101. Szpilman, A.M., Korshin, E.E., Rozenberg, H. & Bachi, M.D. Total syntheses of yingzhaosu A and of its C(14)-epimer including the first evaluation of their antimalarial and cytotoxic activities. J. Org. Chem. 70, 3618–3632 (2005).

    Article  CAS  PubMed  Google Scholar 

  102. Vennerstrom, J.L. et al. Spiro and dispiro 1,2,4-trioxolane antimalarials, and their preparation, pharmaceutical compositions, and use in the treatment of malaria, cancer, and schistosomiasis. US patent application 2005256185 (2005).

  103. Gelb, M.H. et al. Therapeutic intervention based on protein prenylation and associated modifications. Nat. Chem. Biol. 2, 518–528 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Yokoyama, K., Goodwin, G.W., Ghomashchi, F., Glomset, J. & Gelb, M.H. Protein prenyltransferases. Biochem. Soc. Trans. 20, 489–494 (1992).

    Article  CAS  PubMed  Google Scholar 

  105. Leonard, D.M. Ras farnesyltransferase: a new therapeutic target. J. Med. Chem. 40, 2971–2990 (1997).

    Article  CAS  PubMed  Google Scholar 

  106. Eastman, R.T., Buckner, F.S., Yokoyama, K., Gelb, M.H. & Van Voorhis, W.C. Fighting parasitic disease by blocking protein farnesylation. J. Lipid Res. 47, 233–240 (2006).

    Article  CAS  PubMed  Google Scholar 

  107. Gelb, M.H. et al. Protein farnesyl and N-myristoyl transferases: piggy-back medicinal chemistry targets for the development of antitrypanosomatid and antimalarial therapeutics. Mol. Biochem. Parasitol. 126, 155–163 (2003).

    Article  CAS  PubMed  Google Scholar 

  108. Nallan, L. et al. Protein farnesyltransferase inhibitors exhibit potent antimalarial activity. J. Med. Chem. 48, 3704–3713 (2005).

    Article  CAS  PubMed  Google Scholar 

  109. Glenn, M.P. et al. Structurally simple, potent, Plasmodium selective farnesyltransferase inhibitors that arrest the growth of malaria parasites. J. Med. Chem. 49, 5710–5727 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Opperdoes, F.R. & Borst, P. Localization of nine glycolytic enzymes in a microbody-like organelle in Trypanosoma brucei: the glycosome. FEBS Lett. 80, 360–364 (1977).

    Article  CAS  PubMed  Google Scholar 

  111. Clayton, C.E. & Michels, P. Metabolic compartmentation in African trypanosomes. Parasitol. Today 12, 465–471 (1996).

    Article  CAS  PubMed  Google Scholar 

  112. Opperdoes, F.R. & Michels, P.A. Enzymes of carbohydrate metabolism as potential drug targets. Int. J. Parasitol. 31, 482–490 (2001).

    Article  CAS  PubMed  Google Scholar 

  113. Verlinde, C.L.M.J. et al. Glycolysis as a target for the design of new anti-trypanosome drugs. Drug Resist. Updat. 4, 50–65 (2001).

    Article  CAS  PubMed  Google Scholar 

  114. Maertens, J.A. History of the development of azole derivatives. Clin. Microbiol. Infect. 10 (suppl.), 1–10 (2004).

    Article  CAS  PubMed  Google Scholar 

  115. Kale, P. & Johnson, L.B. Second-generation azole antifungal agents. Drugs Today (Barc) 41, 91–105 (2005).

    Article  CAS  Google Scholar 

  116. Apt, W. et al. Treatment of chronic Chagas' disease with itraconazole and allopurinol. Am. J. Trop. Med. Hyg. 59, 133–138 (1998).

    Article  CAS  PubMed  Google Scholar 

  117. McCabe, R. Failure of ketoconazole to cure chronic murine Chagas' disease. J. Infect. Dis. 158, 1408–1409 (1988).

    Article  CAS  PubMed  Google Scholar 

  118. Brener, Z. et al. An experimental and clinical assay with ketoconazole in the treatment of Chagas disease. Mem. Inst. Oswaldo Cruz 88, 149–153 (1993).

    Article  CAS  PubMed  Google Scholar 

  119. Guedes, P.M. et al. Activity of the new triazole derivative albaconazole against Trypanosoma (Schizotrypanum) cruzi in dog hosts. Antimicrob. Agents Chemother. 48, 4286–4292 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Buckner, F.S., Wilson, A.J., White, T.C. & Van Voorhis, W.C. Induction of resistance to azole drugs in Trypanosoma cruzi. Antimicrob. Agents Chemother. 42, 3245–3250 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Hankins, E.G., Gillespie, J.R., Aikenhead, K. & Buckner, F.S. Upregulation of sterol C14-demethylase expression in Trypanosoma cruzi treated with sterol biosynthesis inhibitors. Mol. Biochem. Parasitol. 144, 68–75 (2005).

    Article  CAS  PubMed  Google Scholar 

  122. Urbina, J.A. et al. Antiproliferative effects and mechanism of action of SCH 56592 against Trypanosoma (Schizotrypanum) cruzi: in vitro and in vivo studies. Antimicrob. Agents Chemother. 42, 1771–1777 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Molina, J. et al. Activities of the triazole derivative SCH 56592 (posaconazole) against drug-resistant strains of the protozoan parasite Trypanosoma (Schizotrypanum) cruzi in immunocompetent and immunosuppressed murine hosts. Antimicrob. Agents Chemother. 44, 150–155 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Naula, C., Parsons, M. & Mottram, J.C. Protein kinases as drug targets in trypanosomes and Leishmania. Biochim. Biophys. Acta 1754, 151–159 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Bonn, D. New ways with old bones. Osteoporosis researchers look for drugs to replace hormone replacement therapy. Lancet 363, 786–787 (2004).

    Article  PubMed  Google Scholar 

  126. Cichewicz, R.H., Lim, K.C., McKerrow, J.H. & Nair, M.G. Kwanzoquinones A-G and other constituents of Hemerocallis fulva 'Kwanzo' roots and their acivity against the human trematode parasite, Schistosoma mansoni. Tetrahedron 58, 8597–8606 (2002).

    Article  CAS  Google Scholar 

  127. Kohn, A.B., Anderson, P.A., Roberts-Misterly, J.M. & Greenberg, R.M. Schistosome calcium channel beta subunits. Unusual modulatory effects and potential role in the action of the antischistosomal drug praziquantel. J. Biol. Chem. 276, 36873–36876 (2001).

    Article  CAS  PubMed  Google Scholar 

  128. Wasilewski, M.M., Lim, K.C., Phillips, J. & McKerrow, J.H. Cysteine protease inhibitors block schistosome hemoglobin degradation in vitro and decrease worm burden and egg production in vivo. Mol. Biochem. Parasitol. 81, 179–189 (1996).

    Article  CAS  PubMed  Google Scholar 

  129. Mackey, Z.B. et al. Discovery of trypanocidal compounds by whole cell HTS of Trypanosoma brucei. Chem. Biol. Drug Des. 67, 355–363 (2006).

    Article  CAS  PubMed  Google Scholar 

  130. St. George, S., Bishop, J.V., Titus, R.G. & Selitrennikoff, C.P. Novel compounds active against Leishmania major. Antimicrob. Agents Chemother. 50, 474–479 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Weisman, J.L. et al. Searching for new antimalarial therapeutics amongst known drugs. Chem. Biol. Drug Des. 67, 409–416 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Chong, C.R., Chen, X., Shi, L., Liu, J.O. & Sullivan, D.J. A clinical drug library screen identifies astemizole as an antimalarial agent. Nat. Chem. Biol. 2, 415–416 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are supported by the Sandler Family Supporting Foundation, the Bernard Osher Foundation, the Drugs for Neglected Diseases Initiative, and US National Institute of Allergy and Infectious Disease Tropical Disease Research Units grant AI-35707.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Adam R Renslo or James H McKerrow.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Table 1

Additional reviews and resources recommended by the authors. (DOC 28 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Renslo, A., McKerrow, J. Drug discovery and development for neglected parasitic diseases. Nat Chem Biol 2, 701–710 (2006). https://doi.org/10.1038/nchembio837

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio837

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing