Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Illuminating developmental biology through photochemistry

Abstract

Developmental biology has been continually shaped by technological advances, evolving from a descriptive science into one immersed in molecular and cellular mechanisms. Most recently, genome sequencing and 'omics' profiling have provided developmental biologists with a wealth of genetic and biochemical information; however, fully translating this knowledge into functional understanding will require new experimental capabilities. Photoactivatable probes have emerged as particularly valuable tools for investigating developmental mechanisms, as they can enable rapid, specific manipulations of DNA, RNA, proteins, and cells with spatiotemporal precision. In this Perspective, we describe optochemical and optogenetic systems that have been applied in multicellular organisms, insights gained through the use of these probes, and their current limitations. We also suggest how chemical biologists can expand the reach of photoactivatable technologies and bring new depth to our understanding of organismal development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Photoresponsive proteins evolved by microbes and plants.
Figure 2: Photoresponsive synthetic compounds.
Figure 3: Photoactivatable probes of cell function.
Figure 4: Optochemical and optogenetic probes of gene function.
Figure 5: Optochemical probes of protein function.
Figure 6: Optogenetic probes of protein function.
Figure 7: Optochemical and optogenetic studies of embryonic patterning.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Palczewski, K. Chemistry and biology of vision. J. Biol. Chem. 287, 1612–1619 (2012).

    CAS  PubMed  Google Scholar 

  2. Ernst, O.P. et al. Microbial and animal rhodopsins: structures, functions, and molecular mechanisms. Chem. Rev. 114, 126–163 (2014).

    CAS  PubMed  Google Scholar 

  3. Lin, J.Y. A user's guide to channelrhodopsin variants: features, limitations and future developments. Exp. Physiol. 96, 19–25 (2011).

    Article  PubMed  Google Scholar 

  4. Wietek, J. & Prigge, M. Enhancing channelrhodopsins: an overview. Methods Mol. Biol. 1408, 141–165 (2016).

    CAS  PubMed  Google Scholar 

  5. Nagano, S. From photon to signal in phytochromes: similarities and differences between prokaryotic and plant phytochromes. J. Plant Res. 129, 123–135 (2016).

    CAS  PubMed  Google Scholar 

  6. Masuda, S. Light detection and signal transduction in the BLUF photoreceptors. Plant Cell Physiol. 54, 171–179 (2013).

    CAS  PubMed  Google Scholar 

  7. Ahmad, M. Photocycle and signaling mechanisms of plant cryptochromes. Curr. Opin. Plant Biol. 33, 108–115 (2016).

    CAS  PubMed  Google Scholar 

  8. Herrou, J. & Crosson, S. Function, structure and mechanism of bacterial photosensory LOV proteins. Nat. Rev. Microbiol. 9, 713–723 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Suetsugu, N. & Wada, M. Evolution of three LOV blue light receptor families in green plants and photosynthetic stramenopiles: phototropin, ZTL/FKF1/LKP2 and aureochrome. Plant Cell Physiol. 54, 8–23 (2013).

    CAS  PubMed  Google Scholar 

  10. Harper, S.M., Neil, L.C. & Gardner, K.H. Structural basis of a phototropin light switch. Science 301, 1541–1544 (2003).

    CAS  PubMed  Google Scholar 

  11. Bandara, H.M. & Burdette, S.C. Photoisomerization in different classes of azobenzene. Chem. Soc. Rev. 41, 1809–1825 (2012).

    CAS  PubMed  Google Scholar 

  12. Fihey, A., Perrier, A., Browne, W.R. & Jacquemin, D. Multiphotochromic molecular systems. Chem. Soc. Rev. 44, 3719–3759 (2015).

    CAS  PubMed  Google Scholar 

  13. Szymański, W., Beierle, J.M., Kistemaker, H.A., Velema, W.A. & Feringa, B.L. Reversible photocontrol of biological systems by the incorporation of molecular photoswitches. Chem. Rev. 113, 6114–6178 (2013).

    PubMed  Google Scholar 

  14. Dong, M., Babalhavaeji, A., Samanta, S., Beharry, A.A. & Woolley, G.A. Red-shifting azobenzene photoswitches for in vivo use. Acc. Chem. Res. 48, 2662–2670 (2015).

    CAS  PubMed  Google Scholar 

  15. Barltrop, J.A., Plant, P.J. & Schofield, P. Photosensitive protective groups. Chem. Commun. (London) 1966, 822–823 (1966).

    Google Scholar 

  16. Kaplan, J.H., Forbush, B. III & Hoffman, J.F. Rapid photolytic release of adenosine 5′-triphosphate from a protected analogue: utilization by the Na:K pump of human red blood cell ghosts. Biochemistry 17, 1929–1935 (1978).

    CAS  PubMed  Google Scholar 

  17. Wilcox, M. et al. Synthesis of photolabile “precursors” of amino acid neurotransmitters. J. Org. Chem. 55, 1585–1589 (1990).

    CAS  Google Scholar 

  18. Corrie, J.E.T., Furuta, T., Givens, R., Yousef, A.L. & Goeldner, M. in Dynamic Studies in Biology (eds. Goeldner, M. & Givens, R.S.) 1–94 (Wiley–VCH Verlag GmbH & Co. KgaA, 2005).

    Google Scholar 

  19. Gorka, A.P., Nani, R.R., Zhu, J., Mackem, S. & Schnermann, M.J. A near-IR uncaging strategy based on cyanine photochemistry. J. Am. Chem. Soc. 136, 14153–14159 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Carling, C.J. et al. Efficient red light photo-uncaging of active molecules in water upon assembly into nanoparticles. Chem. Sci. 7, 2392–2398 (2016).

    CAS  PubMed  Google Scholar 

  21. Krafft, G.A., Sutton, W.R. & Cummings, R.T. Photoactivable fluorophores. 3. Synthesis and photoactivation of fluorogenic difunctionalized fluoresceins. J. Am. Chem. Soc. 110, 301–303 (1988).

    CAS  Google Scholar 

  22. Gee, K.R., Weinberg, E.S. & Kozlowski, D.J. Caged Q-rhodamine dextran: a new photoactivated fluorescent tracer. Bioorg. Med. Chem. Lett. 11, 2181–2183 (2001).

    CAS  PubMed  Google Scholar 

  23. Hatta, K., Tsujii, H. & Omura, T. Cell tracking using a photoconvertible fluorescent protein. Nat. Protoc. 1, 960–967 (2006).

    CAS  PubMed  Google Scholar 

  24. Rodriguez, E.A. et al. The growing and glowing toolbox of fluorescent and photoactive proteins. Trends Biochem. Sci. 42, 111–129 (2017).

    CAS  PubMed  Google Scholar 

  25. Kwan, K.M. et al. A complex choreography of cell movements shapes the vertebrate eye. Development 139, 359–372 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. McKinney, M.C. et al. Evidence for dynamic rearrangements but lack of fate or position restrictions in premigratory avian trunk neural crest. Development 140, 820–830 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Huang, P., Xiong, F., Megason, S.G. & Schier, A.F. Attenuation of Notch and Hedgehog signaling is required for fate specification in the spinal cord. PLoS Genet. 8, e1002762 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Nirenberg, S. & Cepko, C. Targeted ablation of diverse cell classes in the nervous system in vivo. J. Neurosci. 13, 3238–3251 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Jewhurst, K., Levin, M. & McLaughlin, K.A. Optogenetic control of apoptosis in targeted tissues of Xenopus laevis embryos. J. Cell Death 7, 25–31 (2014).

    PubMed  PubMed Central  Google Scholar 

  30. Qi, Y.B., Garren, E.J., Shu, X., Tsien, R.Y. & Jin, Y. Photo-inducible cell ablation in Caenorhabditis elegans using the genetically encoded singlet oxygen generating protein miniSOG. Proc. Natl. Acad. Sci. USA 109, 7499–7504 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Xu, S. & Chisholm, A.D. Highly efficient optogenetic cell ablation in C. elegans using membrane-targeted miniSOG. Sci. Rep. 6, 21271 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Makhijani, K. et al. Precision optogenetic tool for selective single- and multiple-cell ablation in a live animal model system. Cell Chem. Biol. 24, 110–119 (2017). Optimization of miniSOG through directed evolution and its application in Drosophila embryos.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Sinha, D.K. et al. Photoactivation of the CreER T2 recombinase for conditional site-specific recombination with high spatiotemporal resolution. Zebrafish 7, 199–204 (2010). Application of caged 4-hydroxycyclofen to control Cre recombinase activity in zebrafish embryos.

    CAS  PubMed  Google Scholar 

  34. Lu, X. et al. Optochemogenetics (OCG) allows more precise control of genetic engineering in mice with CreER regulators. Bioconjug. Chem. 23, 1945–1951 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Kennedy, M.J. et al. Rapid blue-light-mediated induction of protein interactions in living cells. Nat. Methods 7, 973–975 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Taslimi, A. et al. Optimized second-generation CRY2–CIB dimerizers and photoactivatable Cre recombinase. Nat. Chem. Biol. 12, 425–430 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Schindler, S.E. et al. Photo-activatable Cre recombinase regulates gene expression in vivo. Sci. Rep. 5, 13627 (2015).

    PubMed  PubMed Central  Google Scholar 

  38. Nihongaki, Y., Kawano, F., Nakajima, T. & Sato, M. Photoactivatable CRISPR–Cas9 for optogenetic genome editing. Nat. Biotechnol. 33, 755–760 (2015).

    Article  CAS  PubMed  Google Scholar 

  39. Kawano, F., Suzuki, H., Furuya, A. & Sato, M. Engineered pairs of distinct photoswitches for optogenetic control of cellular proteins. Nat. Commun. 6, 6256 (2015).

    CAS  PubMed  Google Scholar 

  40. Cambridge, S.B. et al. Doxycycline-dependent photoactivated gene expression in eukaryotic systems. Nat. Methods 6, 527–531 (2009).

    CAS  PubMed  Google Scholar 

  41. Wang, X., Chen, X. & Yang, Y. Spatiotemporal control of gene expression by a light-switchable transgene system. Nat. Methods 9, 266–269 (2012). Development of GAVPO, a VIVID LOV-domain-based photoactivatable transcription factor that is compatible with GAL4–UAS systems.

    CAS  PubMed  Google Scholar 

  42. Liu, H., Gomez, G., Lin, S., Lin, S. & Lin, C. Optogenetic control of transcription in zebrafish. PLoS One 7, e50738 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Müller, K. et al. A red/far-red light-responsive bi-stable toggle switch to control gene expression in mammalian cells. Nucleic Acids Res. 41, e77 (2013).

    PubMed  PubMed Central  Google Scholar 

  44. Konermann, S. et al. Optical control of mammalian endogenous transcription and epigenetic states. Nature 500, 472–476 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Nihongaki, Y., Yamamoto, S., Kawano, F., Suzuki, H. & Sato, M. CRISPR–Cas9-based photoactivatable transcription system. Chem. Biol. 22, 169–174 (2015).

    CAS  PubMed  Google Scholar 

  46. Chan, Y.B., Alekseyenko, O.V. & Kravitz, E.A. Optogenetic control of gene expression in Drosophila. PLoS One 10, e0138181 (2015).

    PubMed  PubMed Central  Google Scholar 

  47. Motta-Mena, L.B. et al. An optogenetic gene expression system with rapid activation and deactivation kinetics. Nat. Chem. Biol. 10, 196–202 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Reade, A. et al. TAEL: a zebrafish-optimized optogenetic gene expression system with fine spatial and temporal control. Development 144, 345–355 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Shimojo, H. et al. Oscillatory control of Delta-like1 in cell interactions regulates dynamic gene expression and tissue morphogenesis. Genes Dev. 30, 102–116 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Blum, M., De Robertis, E.M., Wallingford, J.B. & Niehrs, C. Morpholinos: antisense and sensibility. Dev. Cell 35, 145–149 (2015).

    CAS  PubMed  Google Scholar 

  51. Shestopalov, I.A., Sinha, S. & Chen, J.K. Light-controlled gene silencing in zebrafish embryos. Nat. Chem. Biol. 3, 650–651 (2007).

    CAS  PubMed  Google Scholar 

  52. Tomasini, A.J., Schuler, A.D., Zebala, J.A. & Mayer, A.N. PhotoMorphs: a novel light-activated reagent for controlling gene expression in zebrafish. Genesis 47, 736–743 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Deiters, A. et al. Photocaged morpholino oligomers for the light-regulation of gene function in zebrafish and Xenopus embryos. J. Am. Chem. Soc. 132, 15644–15650 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Yamazoe, S., Shestopalov, I.A., Provost, E., Leach, S.D. & Chen, J.K. Cyclic caged morpholinos: conformationally gated probes of embryonic gene function. Angew. Chem. Int. Edn Engl. 51, 6908–6911 (2012).

    CAS  Google Scholar 

  55. Wang, Y. et al. Manipulation of gene expression in zebrafish using caged circular morpholino oligomers. Nucleic Acids Res. 40, 11155–11162 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Yamazoe, S., Liu, Q., McQuade, L.E., Deiters, A. & Chen, J.K. Sequential gene silencing using wavelength-selective caged morpholino oligonucleotides. Angew. Chem. Int. Edn Engl. 53, 10114–10118 (2014).

    CAS  Google Scholar 

  57. Shestopalov, I.A., Pitt, C.L. & Chen, J.K. Spatiotemporal resolution of the Ntla transcriptome in axial mesoderm development. Nat. Chem. Biol. 8, 270–276 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Moore, J.C. et al. Post-transcriptional mechanisms contribute to Etv2 repression during vascular development. Dev. Biol. 384, 128–140 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Payumo, A.Y., Walker, W.J., McQuade, L.E., Yamazoe, S. & Chen, J.K. Optochemical dissection of T-box gene-dependent medial floor plate development. ACS Chem. Biol. 10, 1466–1475 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Payumo, A.Y., McQuade, L.E., Walker, W.J., Yamazoe, S. & Chen, J.K. Tbx16 regulates hox gene activation in mesodermal progenitor cells. Nat. Chem. Biol. 12, 694–701 (2016). Application of caged morpholinos to determine the Tbx16 transcriptome in mesodermal progenitor cells, revealing a role for this transcription factor in hox gene regulation.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Jay, D.G. & Keshishian, H. Laser inactivation of fasciclin I disrupts axon adhesion of grasshopper pioneer neurons. Nature 348, 548–550 (1990).

    CAS  PubMed  Google Scholar 

  62. Morckel, A.R. et al. A photoactivatable small-molecule inhibitor for light-controlled spatiotemporal regulation of Rho kinase in live embryos. Development 139, 437–442 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Minden, J., Namba, R., Mergliano, J. & Cambridge, S. Photoactivated gene expression for cell fate mapping and cell manipulation. Sci. STKE 2000, pl1 (2000).

    CAS  PubMed  Google Scholar 

  64. Xu, L. et al. Spatiotemporal manipulation of retinoic acid activity in zebrafish hindbrain development via photo-isomerization. Development 139, 3355–3362 (2012).

    CAS  PubMed  Google Scholar 

  65. Broichhagen, J. & Trauner, D. The in vivo chemistry of photoswitched tethered ligands. Curr. Opin. Chem. Biol. 21, 121–127 (2014).

    CAS  PubMed  Google Scholar 

  66. Schönberger, M. & Trauner, D. A photochromic agonist for μ-opioid receptors. Angew. Chem. Int. Edn Engl. 53, 3264–3267 (2014). Photoswitchable control of the m-opioid receptor using an azobenzene analog of fentanyl.

    Google Scholar 

  67. Frank, J.A. et al. Photoswitchable fatty acids enable optical control of TRPV1. Nat. Commun. 6, 7118 (2015).

    PubMed  Google Scholar 

  68. Kokel, D. et al. Photochemical activation of TRPA1 channels in neurons and animals. Nat. Chem. Biol. 9, 257–263 (2013). Discovery of a photoswitchable TRPA1 agonist through behavior-based chemical screen in zebrafish.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Buckley, C.E. et al. Reversible optogenetic control of subcellular protein localization in a live vertebrate embryo. Dev. Cell 36, 117–126 (2016). Application of the PhyB–PIF system to control membrane recruitment of signaling proteins in zebrafish embryos, including the apical polarity protein Pard3.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Guglielmi, G., Barry, J.D., Huber, W. & De Renzis, S. An optogenetic method to modulate cell contractility during tissue morphogenesis. Dev. Cell 35, 646–660 (2015). Application of the CRY2–CIB1 system to control membrane recruitment of inositol polyphosphate 5-phosphatase, PI(4,5)P 2 levels, and cell contractility in Drosophila embryos.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Strickland, D. et al. TULIPs: tunable, light-controlled interacting protein tags for cell biology. Nat. Methods 9, 379–384 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Lungu, O.I. et al. Designing photoswitchable peptides using the AsLOV2 domain. Chem. Biol. 19, 507–517 (2012). Refs. 71 and 72 : Incorporation of cryptic peptide ligands into the PHOT1 LOV2 domain to achieve light-induced heterodimerization with ligand-binding partners.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Guntas, G. et al. Engineering an improved light-induced dimer (iLID) for controlling the localization and activity of signaling proteins. Proc. Natl. Acad. Sci. USA 112, 112–117 (2015).

    CAS  PubMed  Google Scholar 

  74. Yumerefendi, H. et al. Control of protein activity and cell fate specification via light-mediated nuclear translocation. PLoS One 10, e0128443 (2015).

    PubMed  PubMed Central  Google Scholar 

  75. Johnson, H.E. et al. The spatiotemporal limits of developmental Erk signaling. Dev. Cell 40, 185–192 (2017). Application of PHOT1 LOV2-domain-encrypted peptides to control membrane recruitment of SOS and Ras–Erk signaling in Drosophila embryos.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Bonger, K.M., Rakhit, R., Payumo, A.Y., Chen, J.K. & Wandless, T.J. General method for regulating protein stability with light. ACS Chem. Biol. 9, 111–115 (2014).

    CAS  PubMed  Google Scholar 

  77. Ito, S., Song, Y.H. & Imaizumi, T. LOV domain-containing F-box proteins: light-dependent protein degradation modules in Arabidopsis. Mol. Plant 5, 573–582 (2012).

    PubMed  Google Scholar 

  78. Schröder-Lang, S. et al. Fast manipulation of cellular cAMP level by light in vivo. Nat. Methods 4, 39–42 (2007).

    PubMed  Google Scholar 

  79. Stierl, M. et al. Light modulation of cellular cAMP by a small bacterial photoactivated adenylyl cyclase, bPAC, of the soil bacterium Beggiatoa. J. Biol. Chem. 286, 1181–1188 (2011).

    CAS  PubMed  Google Scholar 

  80. Ryu, M.H. et al. Engineering adenylate cyclases regulated by near-infrared window light. Proc. Natl. Acad. Sci. USA 111, 10167–10172 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Gasser, C. et al. Engineering of a red-light-activated human cAMP/cGMP-specific phosphodiesterase. Proc. Natl. Acad. Sci. USA 111, 8803–8808 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Wu, Y.I. et al. A genetically encoded photoactivatable Rac controls the motility of living cells. Nature 461, 104–108 (2009). Application of the PHOT1 LOV2 domain to create photoactivatable Rac1.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Yoo, S.K. et al. Differential regulation of protrusion and polarity by PI3K during neutrophil motility in live zebrafish. Dev. Cell 18, 226–236 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Wang, X., He, L., Wu, Y.I., Hahn, K.M. & Montell, D.J. Light-mediated activation reveals a key role for Rac in collective guidance of cell movement in vivo. Nat. Cell Biol. 12, 591–597 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Grusch, M. et al. Spatio-temporally precise activation of engineered receptor tyrosine kinases by light. EMBO J. 33, 1713–1726 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Hisatomi, O., Nakatani, Y., Takeuchi, K., Takahashi, F. & Kataoka, H. Blue light-induced dimerization of monomeric aureochrome-1 enhances its affinity for the target sequence. J. Biol. Chem. 289, 17379–17391 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Sako, K. et al. Optogenetic control of Nodal signaling reveals a temporal pattern of Nodal signaling regulating cell fate specification during gastrulation. Cell Rep. 16, 866–877 (2016). Application of the AUREO1 LOV domain to create photoactivatable Nodal receptors and their use to study temporal aspects of Nodal signaling in zebrafish embryos.

    CAS  PubMed  Google Scholar 

  88. Zoltowski, B.D., Vaccaro, B. & Crane, B.R. Mechanism-based tuning of a LOV domain photoreceptor. Nat. Chem. Biol. 5, 827–834 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Kimmel, C.B., Kane, D.A., Walker, C., Warga, R.M. & Rothman, M.B. A mutation that changes cell movement and cell fate in the zebrafish embryo. Nature 337, 358–362 (1989).

    CAS  PubMed  Google Scholar 

  90. Ho, R.K. & Kane, D.A. Cell-autonomous action of zebrafish spt-1 mutation in specific mesodermal precursors. Nature 348, 728–730 (1990).

    CAS  PubMed  Google Scholar 

  91. Griffin, K.J., Amacher, S.L., Kimmel, C.B. & Kimelman, D. Molecular identification of spadetail: regulation of zebrafish trunk and tail mesoderm formation by T-box genes. Development 125, 3379–3388 (1998).

    CAS  PubMed  Google Scholar 

  92. Ho, R.K. Cell movements and cell fate during zebrafish gastrulation. Dev. Suppl. 1992, 65–73 (1992).

    Google Scholar 

  93. Myers, D.C., Sepich, D.S. & Solnica-Krezel, L. Bmp activity gradient regulates convergent extension during zebrafish gastrulation. Dev. Biol. 243, 81–98 (2002).

    CAS  PubMed  Google Scholar 

  94. Schier, A.F., Neuhauss, S.C., Helde, K.A., Talbot, W.S. & Driever, W. The one-eyed pinhead gene functions in mesoderm and endoderm formation in zebrafish and interacts with no tail. Development 124, 327–342 (1997).

    CAS  PubMed  Google Scholar 

  95. Sprenger, F. & Nüsslein-Volhard, C. Torso receptor activity is regulated by a diffusible ligand produced at the extracellular terminal regions of the Drosophila egg. Cell 71, 987–1001 (1992).

    CAS  PubMed  Google Scholar 

  96. Lu, X., Chou, T.B., Williams, N.G., Roberts, T. & Perrimon, N. Control of cell fate determination by p21ras/Ras1, an essential component of torso signaling in Drosophila. Genes Dev. 7, 621–632 (1993).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge support by the National Institutes of Health (R01 GM108952 to J.K.C.; P50 GM107615 to the Stanford Center for Systems Biology), and we thank J.A. Crapster and Z. Feng for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James K Chen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kowalik, L., Chen, J. Illuminating developmental biology through photochemistry. Nat Chem Biol 13, 587–598 (2017). https://doi.org/10.1038/nchembio.2369

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2369

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing