Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The Rrp4–exosome complex recruits and channels substrate RNA by a unique mechanism

Abstract

The exosome is a large molecular machine involved in RNA degradation and processing. Here we address how the trimeric Rrp4 cap enhances the activity of the archaeal enzyme complex. Using methyl-TROSY NMR methods we identified a 50-Å long RNA binding path on each Rrp4 protomer. We show that the Rrp4 cap can thus simultaneously recruit three substrates, one of which is degraded in the core while the others are positioned for subsequent degradation rounds. The local interaction energy between the substrate and the Rrp4–exosome increases from the periphery of the complex toward the active sites. Notably, the intrinsic interaction strength between the cap and the substrate is weakened as soon as substrates enter the catalytic barrel, which provides a means to reduce friction during substrate movements toward the active sites. Our data thus reveal a sophisticated exosome–substrate interaction mechanism that enables efficient RNA degradation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure and NMR spectra of the Rrp4–exosome complex.
Figure 2: Methionine scanning identifies residues in Rrp4 that interact with substrate RNA.
Figure 3: Activity and RNA interaction surface of the Rrp4–exosome.
Figure 4: Quantification of RNA–exosome interactions.
Figure 5: Illustration of the Rrp4–modulated RNA degradation mechanism.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Mitchell, P., Petfalski, E., Shevchenko, A., Mann, M. & Tollervey, D. The exosome: a conserved eukaryotic RNA processing complex containing multiple 3′→5′ exoribonucleases. Cell 91, 457–466 (1997).

    Article  CAS  Google Scholar 

  2. Bousquet-Antonelli, C., Presutti, C. & Tollervey, D. Identification of a regulated pathway for nuclear pre-mRNA turnover. Cell 102, 765–775 (2000).

    Article  CAS  Google Scholar 

  3. Mitchell, P., Petfalski, E. & Tollervey, D. The 3′ end of yeast 5.8S rRNA is generated by an exonuclease processing mechanism. Genes Dev. 10, 502–513 (1996).

    Article  CAS  Google Scholar 

  4. van Hoof, A., Frischmeyer, P.A., Dietz, H.C. & Parker, R. Exosome-mediated recognition and degradation of mRNAs lacking a termination codon. Science 295, 2262–2264 (2002).

    Article  CAS  Google Scholar 

  5. Dziembowski, A., Lorentzen, E., Conti, E. & Séraphin, B. A single subunit, Dis3, is essentially responsible for yeast exosome core activity. Nat. Struct. Mol. Biol. 14, 15–22 (2007).

    Article  CAS  Google Scholar 

  6. Evguenieva-Hackenberg, E., Walter, P., Hochleitner, E., Lottspeich, F. & Klug, G. An exosome-like complex in Sulfolobus solfataricus. EMBO Rep. 4, 889–893 (2003).

    Article  CAS  Google Scholar 

  7. Walter, P. et al. Characterization of native and reconstituted exosome complexes from the hyperthermophilic archaeon Sulfolobus solfataricus. Mol. Microbiol. 62, 1076–1089 (2006).

    Article  CAS  Google Scholar 

  8. Roppelt, V., Klug, G. & Evguenieva-Hackenberg, E. The evolutionarily conserved subunits Rrp4 and Csl4 confer different substrate specificities to the archaeal exosome. FEBS Lett. 584, 2931–2936 (2010).

    Article  CAS  Google Scholar 

  9. Wasmuth, E.V., Januszyk, K. & Lima, C.D. Structure of an Rrp6-RNA exosome complex bound to poly(A) RNA. Nature 511, 435–439 (2014).

    Article  CAS  Google Scholar 

  10. Liu, Q., Greimann, J.C. & Lima, C.D. Reconstitution, activities, and structure of the eukaryotic RNA exosome. Cell 127, 1223–1237 (2006).

    Article  CAS  Google Scholar 

  11. Makino, D.L., Baumgärtner, M. & Conti, E. Crystal structure of an RNA-bound 11-subunit eukaryotic exosome complex. Nature 495, 70–75 (2013).

    Article  CAS  Google Scholar 

  12. Lorentzen, E. et al. The archaeal exosome core is a hexameric ring structure with three catalytic subunits. Nat. Struct. Mol. Biol. 12, 575–581 (2005).

    Article  CAS  Google Scholar 

  13. Navarro, M.V., Oliveira, C.C., Zanchin, N.I. & Guimarães, B.G. Insights into the mechanism of progressive RNA degradation by the archaeal exosome. J. Biol. Chem. 283, 14120–14131 (2008).

    Article  CAS  Google Scholar 

  14. Lorentzen, E. & Conti, E. Structural basis of 3′ end RNA recognition and exoribonucleolytic cleavage by an exosome RNase PH core. Mol. Cell 20, 473–481 (2005).

    Article  CAS  Google Scholar 

  15. Lorentzen, E., Dziembowski, A., Lindner, D., Seraphin, B. & Conti, E. RNA channelling by the archaeal exosome. EMBO Rep. 8, 470–476 (2007).

    Article  CAS  Google Scholar 

  16. Büttner, K., Wenig, K. & Hopfner, K.P. Structural framework for the mechanism of archaeal exosomes in RNA processing. Mol. Cell 20, 461–471 (2005).

    Article  Google Scholar 

  17. Hartung, S., Niederberger, T., Hartung, M., Tresch, A. & Hopfner, K.P. Quantitative analysis of processive RNA degradation by the archaeal RNA exosome. Nucleic Acids Res. 38, 5166–5176 (2010).

    Article  CAS  Google Scholar 

  18. Audin, M.J., Wurm, J.P., Cvetkovic, M.A. & Sprangers, R. The oligomeric architecture of the archaeal exosome is important for processive and efficient RNA degradation. Nucleic Acids Res. 44, 2962–2973 (2016).

    Article  Google Scholar 

  19. Koonin, E.V., Wolf, Y.I. & Aravind, L. Prediction of the archaeal exosome and its connections with the proteasome and the translation and transcription machineries by a comparative-genomic approach. Genome Res. 11, 240–252 (2001).

    Article  CAS  Google Scholar 

  20. Niederberger, T., Hartung, S., Hopfner, K.P. & Tresch, A. Processive RNA decay by the exosome: merits of a quantitative Bayesian sampling approach. RNA Biol. 8, 55–60 (2011).

    Article  CAS  Google Scholar 

  21. Wiesner, S. & Sprangers, R. Methyl groups as NMR probes for biomolecular interactions. Curr. Opin. Struct. Biol. 35, 60–67 (2015).

    Article  CAS  Google Scholar 

  22. Kerfah, R., Plevin, M.J., Sounier, R., Gans, P. & Boisbouvier, J. Methyl-specific isotopic labeling: a molecular tool box for solution NMR studies of large proteins. Curr. Opin. Struct. Biol. 32, 113–122 (2015).

    Article  CAS  Google Scholar 

  23. Gardner, K.H. & Kay, L.E. Production and incorporation of 15N, 13C, 2H (1H-δ1 methyl) isoleucine into proteins for multidimensional NMR studies. J. Am. Chem. Soc. 119, 7599–7600 (1997).

    Article  CAS  Google Scholar 

  24. Tugarinov, V., Hwang, P.M., Ollerenshaw, J.E. & Kay, L.E. Cross-correlated relaxation enhanced 1H–13C NMR spectroscopy of methyl groups in very high molecular weight proteins and protein complexes. J. Am. Chem. Soc. 125, 10420–10428 (2003).

    Article  CAS  Google Scholar 

  25. Audin, M.J. et al. The archaeal exosome: identification and quantification of site-specific motions that correlate with cap and RNA binding. Angew. Chem. Int. Edn Engl. 52, 8312–8316 (2013).

    Article  CAS  Google Scholar 

  26. Gelis, I. et al. Structural basis for signal-sequence recognition by the translocase motor SecA as determined by NMR. Cell 131, 756–769 (2007).

    Article  CAS  Google Scholar 

  27. Rosenzweig, R., Moradi, S., Zarrine-Afsar, A., Glover, J.R. & Kay, L.E. Unraveling the mechanism of protein disaggregation through a ClpB-DnaK interaction. Science 339, 1080–1083 (2013).

    Article  CAS  Google Scholar 

  28. Sprangers, R. & Kay, L.E. Quantitative dynamics and binding studies of the 20S proteasome by NMR. Nature 445, 618–622 (2007).

    Article  CAS  Google Scholar 

  29. Mari, S. et al. Structural and functional framework for the autoinhibition of Nedd4-family ubiquitin ligases. Structure 22, 1639–1649 (2014).

    Article  CAS  Google Scholar 

  30. Stoffregen, M.C., Schwer, M.M., Renschler, F.A. & Wiesner, S. Methionine scanning as an NMR tool for detecting and analyzing biomolecular interaction surfaces. Structure 20, 573–581 (2012).

    Article  CAS  Google Scholar 

  31. Rosenzweig, R. & Kay, L.E. Bringing dynamic molecular machines into focus by methyl-TROSY NMR. Annu. Rev. Biochem. 83, 291–315 (2014).

    Article  CAS  Google Scholar 

  32. Sprangers, R., Gribun, A., Hwang, P.M., Houry, W.A. & Kay, L.E. Quantitative NMR spectroscopy of supramolecular complexes: dynamic side pores in ClpP are important for product release. Proc. Natl. Acad. Sci. USA 102, 16678–16683 (2005).

    Article  CAS  Google Scholar 

  33. Amero, C. et al. A systematic mutagenesis-driven strategy for site-resolved NMR studies of supramolecular assemblies. J. Biomol. NMR 50, 229–236 (2011).

    Article  CAS  Google Scholar 

  34. Hollingworth, D. et al. KH domains with impaired nucleic acid binding as a tool for functional analysis. Nucleic Acids Res. 40, 6873–6886 (2012).

    Article  CAS  Google Scholar 

  35. Chekanova, J.A., Dutko, J.A., Mian, I.S. & Belostotsky, D.A. Arabidopsis thaliana exosome subunit AtRrp4p is a hydrolytic 3→5′ exonuclease containing S1 and KH RNA-binding domains. Nucleic Acids Res. 30, 695–700 (2002).

    Article  CAS  Google Scholar 

  36. Holm, L. & Rosenström, P. Dali server: conservation mapping in 3D. Nucleic Acids Res. 38, W545–W549 (2010).

    Article  CAS  Google Scholar 

  37. Jencks, W.P. On the attribution and additivity of binding energies. Proc. Natl. Acad. Sci. USA 78, 4046–4050 (1981).

    Article  CAS  Google Scholar 

  38. Searle, M.S. & Williams, D.H. On the stability of nucleic acid structures in solution: enthalpy-entropy compensations, internal rotations and reversibility. Nucleic Acids Res. 21, 2051–2056 (1993).

    Article  CAS  Google Scholar 

  39. Waudby, C.A., Ramos, A., Cabrita, L.D. & Christodoulou, J. Two-dimensional NMR lineshape analysis. Sci. Rep. 6, 24826 (2016).

    Article  CAS  Google Scholar 

  40. Kovrigin, E.L. NMR line shapes and multi-state binding equilibria. J. Biomol. NMR 53, 257–270 (2012).

    Article  CAS  Google Scholar 

  41. Bain, A.D., Rex, D.M. & Smith, R.N. Fitting dynamic NMR lineshapes. Magn. Reson. Chem. 39, 122–126 (2001).

    Article  CAS  Google Scholar 

  42. Makino, D.L. et al. RNA degradation paths in a 12-subunit nuclear exosome complex. Nature 524, 54–58 (2015).

    Article  CAS  Google Scholar 

  43. Vuković, L., Chipot, C., Makino, D.L., Conti, E. & Schulten, K. Molecular mechanism of processive 3′ to 5′ RNA translocation in the activesSubunit of the RNA exosome complex. J. Am. Chem. Soc. 138, 4069–4078 (2016).

    Article  Google Scholar 

  44. Zhou, H.X. & Gilson, M.K. Theory of free energy and entropy in noncovalent binding. Chem. Rev. 109, 4092–4107 (2009).

    Article  CAS  Google Scholar 

  45. Butner, K.A. & Kirschner, M.W. Tau protein binds to microtubules through a flexible array of distributed weak sites. J. Cell Biol. 115, 717–730 (1991).

    Article  CAS  Google Scholar 

  46. Saio, T., Guan, X., Rossi, P., Economou, A. & Kalodimos, C.G. Structural basis for protein antiaggregation activity of the trigger factor chaperone. Science 344, 1250494 (2014).

    Article  Google Scholar 

  47. Delaglio, F. et al. NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J. Biomol. NMR 6, 277–293 (1995).

    Article  CAS  Google Scholar 

  48. Pervushin, K., Riek, R., Wider, G. & Wüthrich, K. Attenuated T2 relaxation by mutual cancellation of dipole-dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution. Proc. Natl. Acad. Sci. USA 94, 12366–12371 (1997).

    Article  CAS  Google Scholar 

  49. Ramos, A. & Varani, G. A new method to detect long-range protein-RNA contacts: NMR detection of electron-proton relaxation induced by nitroxide spin-labeled RNA. J. Am. Chem. Soc. 120, 10992–10993 (1998).

    Article  CAS  Google Scholar 

  50. Johnson, P.E., Tomme, P., Joshi, M.D. & McIntosh, L.P. Interaction of soluble cellooligosaccharides with the N-terminal cellulose-binding domain of Cellulomonas fimi CenC 2. NMR and ultraviolet absorption spectroscopy. Biochemistry 35, 13895–13906 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge all members of R.S.'s laboratory for discussions. We thank S. Wiesner for suggestions regarding the methionine scanning experiments, I. Holdermann and J. Petters for excellent technical assistance and V. Truffault for maintenance of the NMR infrastructure. M.A.C. and S.S. acknowledge funding from the International Max Planck Research School “From Molecules to Organisms”. This work was supported by the Max Planck Society and the European Research Council under the European Union's Seventh Framework Programme (FP7/2007–2013), ERC grant agreement 616052 (R.S.).

Author information

Authors and Affiliations

Authors

Contributions

M.A.C. performed and analyzed NMR, binding and degradation experiments. J.P.W. assisted with the binding experiments, M.J.A. assisted with the degradation experiments and S.S. performed NMR assignment experiments. R.S. conceived the project, analyzed data and wrote the manuscript. All authors commented on the data, the analysis and the manuscript.

Corresponding author

Correspondence to Remco Sprangers.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Tables 1–3 and Supplementary Figures 1–17 (PDF 13162 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cvetkovic, M., Wurm, J., Audin, M. et al. The Rrp4–exosome complex recruits and channels substrate RNA by a unique mechanism. Nat Chem Biol 13, 522–528 (2017). https://doi.org/10.1038/nchembio.2328

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2328

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing