Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The GlcN6P cofactor plays multiple catalytic roles in the glmS ribozyme

Abstract

RNA enzymes (ribozymes) have remarkably diverse biological roles despite having limited chemical diversity. Protein enzymes enhance their reactivity through recruitment of cofactors; likewise, the naturally occurring glmS ribozyme uses the glucosamine-6-phosphate (GlcN6P) organic cofactor for phosphodiester bond cleavage. Prior structural and biochemical studies have implicated GlcN6P as the general acid. Here we describe new catalytic roles of GlcN6P through experiments and calculations. Large stereospecific normal thio effects and a lack of metal-ion rescue in the holoribozyme indicate that nucleobases and the cofactor play direct chemical roles and align the active site for self-cleavage. Large stereospecific inverse thio effects in the aporibozyme suggest that the GlcN6P cofactor disrupts an inhibitory interaction of the nucleophile. Strong metal-ion rescue in the aporibozyme reveals that this cofactor also provides electrostatic stabilization. Ribozyme organic cofactors thus perform myriad catalytic roles, thereby allowing RNA to compensate for its limited functional diversity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Secondary structure, active site, and overall-fold SAXS envelope of the glmS ribozyme.
Figure 2: Large normal thio effects and lack of metal-ion rescue for the holoribozyme.
Figure 3: Large inverse thio effect and presence of metal-ion rescue for the aporibozyme.
Figure 4: Increasing concentrations of Mg2+ in the aporibozyme result in a diminished inverse thio effect for the RP thio substrate.
Figure 5: Active site structures from QM/MM optimizations for the glmS aporibozyme with Mg2+ closer to the RP position.
Figure 6: Multiple catalytic roles of the GlcN6P cofactor.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Li, Y. & Breaker, R.R. Kinetics of RNA degradation by specific base catalysis of transesterification involving the 2′-hydroxyl group. J. Am. Chem. Soc. 121, 5364–5372 (1999).

    Article  CAS  Google Scholar 

  2. Soukup, G.A. & Breaker, R.R. Relationship between internucleotide linkage geometry and the stability of RNA. RNA 5, 1308–1325 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Emilsson, G.M., Nakamura, S., Roth, A. & Breaker, R.R. Ribozyme speed limits. RNA 9, 907–918 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Fersht, A. Structure and Mechanism in Protein Science (W.H. Freeman, 1999).

  5. Cech, T.R., Zaug, A.J. & Grabowski, P.J. In vitro splicing of the ribosomal RNA precursor of Tetrahymena: involvement of a guanosine nucleotide in the excision of the intervening sequence. Cell 27, 487–496 (1981).

    Article  CAS  PubMed  Google Scholar 

  6. Viladoms, J., Scott, L.G. & Fedor, M.J. An active-site guanine participates in glmS ribozyme catalysis in its protonated state. J. Am. Chem. Soc. 133, 18388–18396 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Soukup, J.K. The structural and functional uniqueness of the glmS ribozyme. Prog. Mol. Biol. Transl. Sci. 120, 173–193 (2013).

    Article  CAS  PubMed  Google Scholar 

  8. Zhang, S. et al. Role of the active site guanine in the glmS ribozyme self-cleavage mechanism: quantum mechanical/molecular mechanical free energy simulations. J. Am. Chem. Soc. 137, 784–798 (2015).

    Article  CAS  PubMed  Google Scholar 

  9. Klein, D.J. & Ferré-D'Amaré, A.R. Structural basis of glmS ribozyme activation by glucosamine-6-phosphate. Science 313, 1752–1756 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Cochrane, J.C., Lipchock, S.V. & Strobel, S.A. Structural investigation of the glmS ribozyme bound to its catalytic cofactor. Chem. Biol. 14, 97–105 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Viladoms, J. & Fedor, M.J. The glmS ribozyme cofactor is a general acid-base catalyst. J. Am. Chem. Soc. 134, 19043–19049 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Klein, D.J., Wilkinson, S.R., Been, M.D. & Ferré-D'Amaré, A.R. Requirement of helix P2.2 and nucleotide G1 for positioning the cleavage site and cofactor of the glmS ribozyme. J. Mol. Biol. 373, 178–189 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Uhlenbeck, O.C. Keeping RNA happy. RNA 1, 4–6 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Chadalavada, D.M., Senchak, S.E. & Bevilacqua, P.C. The folding pathway of the genomic hepatitis delta virus ribozyme is dominated by slow folding of the pseudoknots. J. Mol. Biol. 317, 559–575 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Brown, T.S., Chadalavada, D.M. & Bevilacqua, P.C. Design of a highly reactive HDV ribozyme sequence uncovers facilitation of RNA folding by alternative pairings and physiological ionic strength. J. Mol. Biol. 341, 695–712 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Roth, A., Nahvi, A., Lee, M., Jona, I. & Breaker, R.R. Characteristics of the glmS ribozyme suggest only structural roles for divalent metal ions. RNA 12, 607–619 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Frederiksen, J.K. & Piccirilli, J.A. Identification of catalytic metal ion ligands in ribozymes. Methods 49, 148–166 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Klawuhn, K., Jansen, J.A., Souchek, J., Soukup, G.A. & Soukup, J.K. Analysis of metal ion dependence in glmS ribozyme self-cleavage and coenzyme binding. ChemBioChem 11, 2567–2571 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Brooks, K.M. & Hampel, K.J. Rapid steps in the glmS ribozyme catalytic pathway: cation and ligand requirements. Biochemistry 50, 2424–2433 (2011).

    Article  CAS  PubMed  Google Scholar 

  20. Murray, J.B., Seyhan, A.A., Walter, N.G., Burke, J.M. & Scott, W.G. The hammerhead, hairpin and VS ribozymes are catalytically proficient in monovalent cations alone. Chem. Biol. 5, 587–595 (1998).

    Article  CAS  PubMed  Google Scholar 

  21. Perrotta, A.T. & Been, M.D. HDV ribozyme activity in monovalent cations. Biochemistry 45, 11357–11365 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Frederiksen, J.K., Li, N.-S., Das, R., Herschlag, D. & Piccirilli, J.A. Metal-ion rescue revisited: biochemical detection of site-bound metal ions important for RNA folding. RNA 18, 1123–1141 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hampel, K.J. & Tinsley, M.M. Evidence for preorganization of the glmS ribozyme ligand binding pocket. Biochemistry 45, 7861–7871 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Thaplyal, P., Ganguly, A., Hammes-Schiffer, S. & Bevilacqua, P.C. Inverse thio effects in the hepatitis delta virus ribozyme reveal that the reaction pathway is controlled by metal ion charge density. Biochemistry 54, 2160–2175 (2015).

    Article  CAS  PubMed  Google Scholar 

  25. DeRose, V.J. Metal ion binding to catalytic RNA molecules. Curr. Opin. Struct. Biol. 13, 317–324 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Johnson-Buck, A.E., McDowell, S.E. & Walter, N.G. Metal ions: supporting actors in the playbook of small ribozymes. Met. Ions Life Sci. 9, 175–196 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bevilacqua, P.C. & Yajima, R. Nucleobase catalysis in ribozyme mechanism. Curr. Opin. Chem. Biol. 10, 455–464 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Cochrane, J.C., Lipchock, S.V., Smith, K.D. & Strobel, S.A. Structural and chemical basis for glucosamine 6-phosphate binding and activation of the glmS ribozyme. Biochemistry 48, 3239–3246 (2009).

    Article  CAS  PubMed  Google Scholar 

  29. Brooks, K.M. & Hampel, K.J. A rate-limiting conformational step in the catalytic pathway of the glmS ribozyme. Biochemistry 48, 5669–5678 (2009).

    Article  CAS  PubMed  Google Scholar 

  30. Scott, E.C. & Uhlenbeck, O.C. A re-investigation of the thio effect at the hammerhead cleavage site. Nucleic Acids Res. 27, 479–484 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yoshida, A., Sun, S. & Piccirilli, J.A. A new metal ion interaction in the Tetrahymena ribozyme reaction revealed by double sulfur substitution. Nat. Struct. Biol. 6, 318–321 (1999).

    Article  CAS  PubMed  Google Scholar 

  32. Ward, W.L. & Derose, V.J. Ground-state coordination of a catalytic metal to the scissile phosphate of a tertiary-stabilized Hammerhead ribozyme. RNA 18, 16–23 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jencks, W.P. Catalysis in Chemistry and Enzymology (Dover, 1969).

  34. Zhang, S. et al. Assessing the potential effects of active site Mg2+ ions in the glmS ribozyme–cofactor complex. J. Phys. Chem. Lett. 7, 3984–3988 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lau, M.W.L. & Ferré-D'Amaré, A.R. An in vitro evolved glmS ribozyme has the wild-type fold but loses coenzyme dependence. Nat. Chem. Biol. 9, 805–810 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chinnapen, D.J.-F. & Sen, D. A deoxyribozyme that harnesses light to repair thymine dimers in DNA. Proc. Natl. Acad. Sci. USA 101, 65–69 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Cernak, P. & Sen, D. A thiamin-utilizing ribozyme decarboxylates a pyruvate-like substrate. Nat. Chem. 5, 971–977 (2013).

    Article  CAS  PubMed  Google Scholar 

  38. Poon, L.C.H. et al. Guanine-rich RNAs and DNAs that bind heme robustly catalyze oxygen transfer reactions. J. Am. Chem. Soc. 133, 1877–1884 (2011).

    Article  CAS  PubMed  Google Scholar 

  39. Emsley, P., Lohkamp, B., Scott, W.G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Acerbo, A.S., Cook, M.J. & Gillilan, R.E. Upgrade of MacCHESS facility for X-ray scattering of biological macromolecules in solution. J. Synchrotron Radiat. 22, 180–186 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Skou, S., Gillilan, R.E. & Ando, N. Synchrotron-based small-angle X-ray scattering of proteins in solution. Nat. Protoc. 9, 1727–1739 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Nielsen, S.S. et al. BioXTAS RAW, a software program for high-throughput automated small-angle X-ray scattering data reduction and preliminary analysis. J. Appl. Crystallogr. 42, 959–964 (2009).

    Article  CAS  Google Scholar 

  43. Petoukhov, M.V. et al. New developments in the ATSAS program package for small-angle scattering data analysis. J. Appl. Crystallogr. 45, 342–350 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. DeLano, W.L. The PyMOL Molecular Graphics System (DeLano Scientific, 2002).

  45. Rambo, R.P. & Tainer, J.A. Improving small-angle X-ray scattering data for structural analyses of the RNA world. RNA 16, 638–646 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lipfert, J., Herschlag, D. & Doniach, S. Riboswitch conformations revealed by small-angle X-ray scattering. in Riboswitches: Methods and Protocols. (ed. Serganov, A.) 141–159 (Humana, 2009).

  47. Case, D.A. et al. AMBER 14 (University of California, San Francisco, 2014).

  48. Yildirim, I., Stern, H.A., Kennedy, S.D., Tubbs, J.D. & Turner, D.H. Reparameterization of RNA χ torsion parameters for the AMBER force field and comparison to NMR Spectra for cytidine and uridine. J. Chem. Theory Comput. 6, 1520–1531 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Allnér, O., Nilsson, L. & Villa, A. Magnesium ion–water coordination and exchange in biomolecular simulations. J. Chem. Theory Comput. 8, 1493–1502 (2012).

    Article  CAS  PubMed  Google Scholar 

  50. E., W., Ren, W. & Vanden-Eijnden, E. Finite temperature string method for the study of rare events. J. Phys. Chem. B 109, 6688–6693 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Torrie, G.M. & Valleau, J.P. Nonphysical sampling distributions in Monte Carlo free-energy estimation: umbrella sampling. J. Comput. Phys. 23, 187–199 (1977).

    Article  Google Scholar 

  52. Rosta, E., Nowotny, M., Yang, W. & Hummer, G. Catalytic mechanism of RNA backbone cleavage by ribonuclease H from quantum mechanics/molecular mechanics simulations. J. Am. Chem. Soc. 133, 8934–8941 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ganguly, A., Thaplyal, P., Rosta, E., Bevilacqua, P.C. & Hammes-Schiffer, S. Quantum mechanical/molecular mechanical free energy simulations of the self-cleavage reaction in the hepatitis delta virus ribozyme. J. Am. Chem. Soc. 136, 1483–1496 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Brooks, B.R. et al. CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. J. Comput. Chem. 4, 187–217 (1983).

    Article  CAS  Google Scholar 

  55. Kumar, S., Rosenberg, J.M., Bouzida, D., Swendsen, R.H. & Kollman, P.A. The weighted histogram analysis method for free-energy calculations on biomolecules. I. The method. J. Comput. Chem. 13, 1011–1021 (1992).

    Article  CAS  Google Scholar 

  56. Shao, Y. et al. Advances in methods and algorithms in a modern quantum chemistry program package. Phys. Chem. Chem. Phys. 8, 3172–3191 (2006).

    Article  CAS  PubMed  Google Scholar 

  57. Becke, A.D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993).

    Article  CAS  Google Scholar 

  58. Lee, C., Yang, W. & Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B Condens. Matter 37, 785–789 (1988).

    Article  CAS  PubMed  Google Scholar 

  59. Vosko, S.H., Wilk, L. & Nusair, M. Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can. J. Phys. 58, 1200–1211 (1980).

    Article  CAS  Google Scholar 

  60. Stephens, P.J., Devlin, F.J., Chabalowski, C.F. & Frisch, M.J. Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J. Phys. Chem. 98, 11623–11627 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Been (Duke University Medical Center) for the generous gift of the plasmid containing the glmS ribozyme sequence, and we thank R. Gillilan and L. Pollack for help with SAXS experiments. We also thank E. Frankel and K. Leamy for assistance with fast hand-mixing reaction time points. Finally, we thank E. Frankel, R. Poudyal, L. Ritchey, and P. Thaplyal for helpful comments on revising the manuscript. This work was supported by US National Institutes of Health grant GM056207 (S.Z., D.R.S., and S.H.-S.) and US National Science Foundation grant CHE-1213667 (J.L.B. and P.C.B.). D.R.S. is supported as a member of the National Institutes of Health Chemistry-Biology Interface (training grant NRSA 1-T-32-GM070421). This work used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by the National Science Foundation. This work was based on research conducted at the Cornell High Energy Synchrotron Source (CHESS), which is supported by the National Science Foundation and the National Institutes of Health/National Institute of General Medical Sciences under NSF award DMR-0936384, in the Macromolecular Diffraction at CHESS (MacCHESS) facility, which is supported by award GM-103485 from the National Institutes of Health, through the National Institute of General Medical Sciences. We also thank the Penn State Proteomics and Mass Spectrometry Core Facility (University Park, PA) and the Penn State Genomics Core Facility (University Park, PA).

Author information

Authors and Affiliations

Authors

Contributions

J.L.B. and P.C.B. designed experiments. J.L.B. performed the biochemistry experiments. J.L.B., N.H.Y., and P.C.B. collected and analyzed SAXS data. S.Z., D.R.S., and S.H.-S. designed calculations. S.Z. and D.R.S. performed the calculations. All authors wrote the manuscript.

Corresponding authors

Correspondence to Sharon Hammes-Schiffer or Philip C Bevilacqua.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Tables 1–6 and Supplementary Figures 1–7 (PDF 1828 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bingaman, J., Zhang, S., Stevens, D. et al. The GlcN6P cofactor plays multiple catalytic roles in the glmS ribozyme. Nat Chem Biol 13, 439–445 (2017). https://doi.org/10.1038/nchembio.2300

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2300

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing