Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Lysine relay mechanism coordinates intermediate transfer in vitamin B6 biosynthesis

This article has been updated

Abstract

Substrate channeling has emerged as a common mechanism for enzymatic intermediate transfer. A conspicuous gap in knowledge concerns the use of covalent lysine imines in the transfer of carbonyl-group-containing intermediates, despite their wideuse in enzymatic catalysis. Here we show how imine chemistry operates in the transfer of covalent intermediates in pyridoxal 5′-phosphate biosynthesis by the Arabidopsis thaliana enzyme Pdx1. An initial ribose 5-phosphate lysine imine is converted to the chromophoric I320 intermediate, simultaneously bound to two lysine residues and partially vacating the active site, which creates space for glyceraldehyde 3-phosphate to bind. Crystal structures show how substrate binding, catalysis and shuttling are coupled to conformational changes around strand β6 of the Pdx1 (βα)8-barrel. The dual-specificity active site and imine relay mechanism for migration of carbonyl intermediates provide elegant solutions to the challenge of coordinating a complex sequence of reactions that follow a path of over 20 Å between substrate- and product-binding sites.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The reaction catalyzed by the Pdx1 and Pdx2 subunits of the PLP synthase complex and the structure of Pdx1.
Figure 2: Crystallographic structures of five covalent intermediates in PLP biosynthesis.
Figure 3: The dual-specificity binding site P1 and the product-binding site P2.
Figure 4: The central role of I320 intermediate transfer in vitamin B6 biosynthesis.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

Change history

  • 23 January 2017

    In the version of this article initially published online, reference to another recently published structure of the I320 complex was inadvertently omitted. The paper reporting the structure, which is now included as ref. 43 of the article, is Robinson, G.C., Kaufmann, M., Roux, C. & Fitzpatrick, T.B. Structural definition of the lysine swing in Arabidopsis thaliana PDX1: intermediate channeling facilitating vitamin B6 biosynthesis. Proc. Natl. Acad. Sci. USA 113, E5821–E5829 (2016). The error has been corrected in the print, PDF and HTML versions of this article.

References

  1. Ehrenshaft, M., Bilski, P., Li, M.Y., Chignell, C.F. & Daub, M.E. A highly conserved sequence is a novel gene involved in de novo vitamin B6 biosynthesis. Proc. Natl. Acad. Sci. USA 96, 9374–9378 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mooney, S. & Hellmann, H. Vitamin B6: killing two birds with one stone? Phytochemistry 71, 495–501 (2010).

    Article  CAS  PubMed  Google Scholar 

  3. Percudani, R. & Peracchi, A. The B6 database: a tool for the description and classification of vitamin B6-dependent enzymatic activities and of the corresponding protein families. BMC Bioinformatics 10, 273 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mittenhuber, G. Phylogenetic analyses and comparative genomics of vitamin B6 (pyridoxine) and pyridoxal phosphate biosynthesis pathways. J. Mol. Microbiol. Biotechnol. 3, 1–20 (2001).

    CAS  PubMed  Google Scholar 

  5. Das, S. et al. Biology's new Rosetta stone. Nature 385, 29–30 (1997).

    Article  CAS  PubMed  Google Scholar 

  6. Fitzpatrick, T.B. et al. Two independent routes of de novo vitamin B6 biosynthesis: not that different after all. Biochem. J. 407, 1–13 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Raschle, T., Amrhein, N. & Fitzpatrick, T.B. On the two components of pyridoxal 5′-phosphate synthase from Bacillus subtilis. J. Biol. Chem. 280, 32291–32300 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Burns, K.E., Xiang, Y., Kinsland, C.L., McLafferty, F.W. & Begley, T.P. Reconstitution and biochemical characterization of a new pyridoxal-5′-phosphate biosynthetic pathway. J. Am. Chem. Soc. 127, 3682–3683 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Hanes, J.W. et al. Mechanistic studies on pyridoxal phosphate synthase: the reaction pathway leading to a chromophoric intermediate. J. Am. Chem. Soc. 130, 3043–3052 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. Raschle, T. et al. Reaction mechanism of pyridoxal 5′-phosphate synthase. Detection of an enzyme-bound chromophoric intermediate. J. Biol. Chem. 282, 6098–6105 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Strohmeier, M. et al. Structure of a bacterial pyridoxal 5′-phosphate synthase complex. Proc. Natl. Acad. Sci. USA 103, 19284–19289 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhu, J., Burgner, J.W., Harms, E., Belitsky, B.R. & Smith, J.L. A new arrangement of (β/α)8 barrels in the synthase subunit of PLP synthase. J. Biol. Chem. 280, 27914–27923 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Hanes, J.W., Keresztes, I. & Begley, T.P. 13C NMR snapshots of the complex reaction coordinate of pyridoxal phosphate synthase. Nat. Chem. Biol. 4, 425–430 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Tambasco-Studart, M. et al. Vitamin B6 biosynthesis in higher plants. Proc. Natl. Acad. Sci. USA 102, 13687–13692 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Guédez, G. et al. Assembly of the eukaryotic PLP-synthase complex from Plasmodium and activation of the Pdx1 enzyme. Structure 20, 172–184 (2012).

    Article  CAS  PubMed  Google Scholar 

  16. Smith, A.M., Brown, W.C., Harms, E. & Smith, J.L. Crystal structures capture three states in the catalytic cycle of a pyridoxal phosphate (PLP) synthase. J. Biol. Chem. 290, 5226–5239 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zein, F. et al. Structural insights into the mechanism of the PLP synthase holoenzyme from Thermotoga maritime. Biochemistry 45, 14609–14620 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Wallner, S., Neuwirth, M., Flicker, K., Tews, I. & Macheroux, P. Dissection of contributions from invariant amino acids to complex formation and catalysis in the heteromeric pyridoxal 5-phosphate synthase complex from Bacillus subtilis. Biochemistry 48, 1928–1935 (2009).

    Article  CAS  PubMed  Google Scholar 

  19. Gengenbacher, M. et al. Vitamin B6 biosynthesis by the malaria parasite Plasmodium falciparum: biochemical and structural insights. J. Biol. Chem. 281, 3633–3641 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Raushel, F.M., Thoden, J.B. & Holden, H.M. Enzymes with molecular tunnels. Acc. Chem. Res. 36, 539–548 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Hanes, J.W., Keresztes, I. & Begley, T.P. Trapping of a chromophoric intermediate in the Pdx1-catalyzed biosynthesis of pyridoxal 5′-phosphate. Angew. Chem. Int. Ed. Engl. 47, 2102–2105 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. Zhang, X. et al. Structural insights into the catalytic mechanism of the yeast pyridoxal 5-phosphate synthase Snz1. Biochem. J. 432, 445–450 (2010).

    Article  CAS  PubMed  Google Scholar 

  23. von Stetten, D. et al. In crystallo optical spectroscopy (icOS) as a complementary tool on the macromolecular crystallography beamlines of the ESRF. Acta Crystallogr. D Biol. Crystallogr. 71, 15–26 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ho, M.-C., Ménétret, J.-F., Tsuruta, H. & Allen, K.N. The origin of the electrostatic perturbation in acetoacetate decarboxylase. Nature 459, 393–397 (2009).

    Article  CAS  PubMed  Google Scholar 

  25. Borshchevskiy, V. et al. Low-dose X-ray radiation induces structural alterations in proteins. Acta Crystallogr. D Biol. Crystallogr. 70, 2675–2685 (2014).

    Article  CAS  PubMed  Google Scholar 

  26. Dubnovitsky, A.P., Ravelli, R.B., Popov, A.N. & Papageorgiou, A.C. Strain relief at the active site of phosphoserine aminotransferase induced by radiation damage. Protein Sci. 14, 1498–1507 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Weik, M. et al. Specific chemical and structural damage to proteins produced by synchrotron radiation. Proc. Natl. Acad. Sci. USA 97, 623–628 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Pearson, A.R. & Owen, R.L. Combining X-ray crystallography and single-crystal spectroscopy to probe enzyme mechanisms. Biochem. Soc. Trans. 37, 378–381 (2009).

    Article  CAS  PubMed  Google Scholar 

  29. Berglund, G.I. et al. The catalytic pathway of horseradish peroxidase at high resolution. Nature 417, 463–468 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Zeldin, O.B., Gerstel, M. & Garman, E.F. Optimizing the spatial distribution of dose in X-ray macromolecular crystallography. J. Synchrotron Radiat. 20, 49–57 (2013).

    Article  CAS  PubMed  Google Scholar 

  31. Foadi, J. et al. Clustering procedures for the optimal selection of data sets from multiple crystals in macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 69, 1617–1632 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Derrer, B. et al. Defining the structural requirements for ribose 5-phosphate-binding and intersubunit cross-talk of the malarial pyridoxal 5-phosphate synthase. FEBS Lett. 584, 4169–4174 (2010).

    Article  CAS  PubMed  Google Scholar 

  33. Raschle, T. et al. Intersubunit cross-talk in pyridoxal 5′-phosphate synthase, coordinated by the C terminus of the synthase subunit. J. Biol. Chem. 284, 7706–7718 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Moccand, C., Kaufmann, M. & Fitzpatrick, T.B. It takes two to tango: defining an essential second active site in pyridoxal 5′-phosphate synthase. PLoS One 6, e16042 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Nagano, N., Orengo, C.A. & Thornton, J.M. One fold with many functions: the evolutionary relationships between TIM barrel families based on their sequences, structures and functions. J. Mol. Biol. 321, 741–765 (2002).

    CAS  PubMed  Google Scholar 

  36. Reeksting, S.B. et al. Exploring inhibition of Pdx1, a component of the PLP synthase complex of the human malaria parasite Plasmodium falciparum. Biochem. J. 449, 175–187 (2013).

    Article  CAS  PubMed  Google Scholar 

  37. Neuwirth, M. et al. X-ray crystal structure of Saccharomyces cerevisiae Pdx1 provides insights into the oligomeric nature of PLP synthases. FEBS Lett. 583, 2179–2186 (2009).

    Article  CAS  PubMed  Google Scholar 

  38. Jenni, S. et al. Structure of fungal fatty acid synthase and implications for iterative substrate shuttling. Science 316, 254–261 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Wu, N., Tsuji, S.Y., Cane, D.E. & Khosla, C. Assessing the balance between protein–protein interactions and enzyme-substrate interactions in the channeling of intermediates between polyketide synthase modules. J. Am. Chem. Soc. 123, 6465–6474 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. Tanovic, A., Samel, S.A., Essen, L.O. & Marahiel, M.A. Crystal structure of the termination module of a nonribosomal peptide synthetase. Science 321, 659–663 (2008).

    Article  CAS  PubMed  Google Scholar 

  41. Pares, S., Cohen-Addad, C., Sieker, L., Neuburger, M. & Douce, R. X-ray structure determination at 2.6-A resolution of a lipoate-containing protein: the H-protein of the glycine decarboxylase complex from pea leaves. Proc. Natl. Acad. Sci. USA 91, 4850–4853 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Reed, L.J. Multienzyme complexes. Acc. Chem. Res. 7, 40–46 (1974).

    Article  CAS  Google Scholar 

  43. Robinson, G.C., Kaufmann, M., Roux, C. & Fitzpatrick, T.B. Structural definition of the lysine swing in Arabidopsis thaliana PDX1: intermediate channeling facilitating vitamin B6 biosynthesis Proc. Natl. Acad. Sci. USA 113, E5821–E5829 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. McCarthy, A.A. et al. A decade of user operation on the macromolecular crystallography MAD beamline ID14-4 at the ESRF J. Synchrotron Radiat. 16, 803–812 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  45. McGeehan, J. et al. Colouring cryo-cooled crystals: online microspectrophotometry. J. Synchrotron Radiat. 16, 163–172 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wakatsuki, S. et al. ID14 'Quadriga', a beamline for protein crystallography at the ESRF. J. Synchrotron Radiat. 5, 215–221 (1998).

    Article  CAS  PubMed  Google Scholar 

  47. de Sanctis, D. et al. ID29: a high-intensity highly automated ESRF beamline for macromolecular crystallography experiments exploiting anomalous scattering. J. Synchrotron Radiat. 19, 455–461 (2012).

    Article  CAS  PubMed  Google Scholar 

  48. Nurizzo, D. et al. The ID23-1 structural biology beamline at the ESRF. J. Synchrotron Radiat. 13, 227–238 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Kabsch, W. XDS. Acta Crystallogr. D Biol. Crystallogr. 66, 125–132 (2010).

  50. Evans, P.R. & Murshudov, G.N. How good are my data and what is the resolution? Acta Crystallogr. D Biol. Crystallogr. 69, 1204–1214 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gildea, R.J. et al. New methods for indexing multi-lattice diffraction data. Acta Crystallogr. D Biol. Crystallogr. 70, 2652–2666 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Vagin, A. & Teplyakov, A. MOLREP: an automated program for molecular replacement. J. Appl. Crystallogr. 30, 1022–1025 (1997).

    Article  CAS  Google Scholar 

  53. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    PubMed  Google Scholar 

  54. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240–255 (1997).

    CAS  PubMed  Google Scholar 

  55. Adams, P.D. et al. The Phenix software for automated determination of macromolecular structures. Methods 55, 94–106 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lebedev, A.A. et al. JLigand: a graphical tool for the CCP4 template-restraint library. Acta Crystallogr. D Biol. Crystallogr. 68, 431–440 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Winn, M.D. et al. Overview of the CCP4 suite and current developments. Acta Crystallogr. D Biol. Crystallogr. 67, 235–242 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zeldin, O.B., Gerstel, M. & Garman, E.F. RADDOSE-3D: time- and space-resolved modelling of dose in macromolecular crystallography. J. Appl. Crystallogr. 46, 1225–1230 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank W.J. Anderson, H. Clarke, C. Phippen (Southampton), A. Wessling and N. Kwak (Heidelberg), for their experimental contributions; T. Fitzpatrick (Geneva, Switzerland) for the generous gift of the expression plasmid for Arabidopsis Pdx1.3; S. Findlow and C. Holes at the Macromolecular Crystallisation Facility, Centre for Biological Sciences, and P. Horton and S. Coles at the Southampton Diffraction Centre, Chemistry, both University of Southampton; J. Kopp and C. Siegmann from the crystallization platform of the Cluster of Excellence CellNetworks, Heidelberg; staff at the Diamond Light Source and the European Synchrotron Radiation Facility for access and excellent user support without which this project would not have been possible; P. Carpentier, M. Weik, G. Gotthard and D. von Stetten at ESRF for support during data collection and online spectroscopy and D. Flot and G. Leonard for flexible access to the ESRF beamlines; A. Douangamath, P. Aller, R. Owen and M. Walsh for support at Diamond beamlines; B. Kappes (Erlangen) and P. Macheroux (Graz) for critical discussions; and L. Kinsland for assistance in preparation of the manuscript. This work was supported in parts by grants by the European Commission (VITBIOMAL-012158) and by the Deutsche Forschungsgemeinschaft (DFG) (TE368) to I.T., by the NIH (DK44083) and by the Robert A. Welch Foundation (A-0034) to T.P.B., by ESRF Mx1461, Mx1732, RADDAM and Diamond Light Source Mx8891 to I.T. M.J.R. was supported by a joint studentship between Diamond Light Source and the University of Southampton.

Author information

Authors and Affiliations

Authors

Contributions

M.J.R., V.W., G.G., S.W., M.S. and J.W.H. performed protein expression, purification and enzymatic essays. M.J.R., V.W., G.G., S.W., M.S. and I.T. performed crystallization and X-ray diffraction experiments. M.J.R., V.W., A.R. and I.T. performed online spectroscopy experiments. M.J.R., V.W., Y.Z., I.S., S.E.E., T.P.B. and I.T. performed crystallographic analysis and data deposition. M.J.R., A.R., G.E., T.P.B. and I.T. performed spectroscopic data analysis. M.J.R., G.E., I.S., S.E.E., T.P.B. and I.T. wrote the paper. M.J.R. and V.W. contributed equally to this work.

Corresponding author

Correspondence to Ivo Tews.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Table 1 and Supplementary Figures 1–6. (PDF 970 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodrigues, M., Windeisen, V., Zhang, Y. et al. Lysine relay mechanism coordinates intermediate transfer in vitamin B6 biosynthesis. Nat Chem Biol 13, 290–294 (2017). https://doi.org/10.1038/nchembio.2273

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2273

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing