Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural and functional insights into asymmetric enzymatic dehydration of alkenols

Abstract

The asymmetric dehydration of alcohols is an important process for the direct synthesis of alkenes. We report the structure and substrate specificity of the bifunctional linalool dehydratase isomerase (LinD) from the bacterium Castellaniella defragrans that catalyzes in nature the hydration of β-myrcene to linalool and the subsequent isomerization to geraniol. Enzymatic kinetic resolutions of truncated and elongated aromatic and aliphatic tertiary alcohols (C5–C15) that contain a specific signature motif demonstrate the broad substrate specificity of LinD. The three-dimensional structure of LinD from Castellaniella defragrans revealed a pentamer with active sites at the protomer interfaces. Furthermore, the structure of LinD in complex with the product geraniol provides initial mechanistic insights into this bifunctional enzyme. Site-directed mutagenesis confirmed active site amino acid residues essential for its dehydration and isomerization activity. These structural and mechanistic insights facilitate the development of hydrating catalysts, enriching the toolbox for novel bond-forming biocatalysis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Natural reaction and primary structure of LinD.
Figure 2: Structure of C. defragrans linalool dehydratase isomerase (LinD, PDB code 5G1W).
Figure 3: Mechanistic hypotheses for the dehydration and isomerization reaction catalyzed by LinD.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Frija, L.M.T. & Afonso, C.A.M. Amberlyst-15: a reusable heterogeneous catalyst for the dehydration of tertiary alcohols. Tetrahedron 68, 7414–7421 (2012).

    Article  CAS  Google Scholar 

  2. Alvarez-Manzaneda, E.J. et al. Triphenylphosphine-iodine: an efficient reagent for the regioselective dehydration of tertiary alcohols. Tetrahedr. Lett. 45, 4453–4455 (2004).

    Article  CAS  Google Scholar 

  3. Raju, S., Moret, M.E. & Klein Gebbink, R.J.M. Rhenium-catalyzed dehydration and deoxydehydration of alcohols and polyols: opportunities for the formation of olefins from biomass. ACS Catal. 5, 281–300 (2015).

    Article  CAS  Google Scholar 

  4. Kantam, M.L., Santhi, P.K. & Siddiqui, M.F. Montmorillonite-catalyzed dehydration of tertiary alcohols to olefins. Tetrahedr. Lett. 34, 1185–1186 (1993).

    Article  CAS  Google Scholar 

  5. Kantam, M.L., Prasad, A.D. & Santhi, P.L. Molybdenum-catalyzed dehydration of tertiary alcohols to olefins. Synth. Commun. 23, 45–48 (1993).

    Article  CAS  Google Scholar 

  6. Posner, G.H. et al. Boron trifluoride etherate promotes fast, mild, clean and regioselective dehydration of tertiary alcohols. Tetrahedr. Lett. 32, 6489–6492 (1991).

    Article  CAS  Google Scholar 

  7. Zhang, X. et al. Low temperature dehydrations of non-activated alcohols via halide catalysis. Org. Chem. Front. 3, 701–708 (2016).

    Article  CAS  Google Scholar 

  8. Manabe, K., Iimura, S., Sun, X.-M. & Kobayashi, S. Dehydration reactions in water. Brønsted acid-surfactant-combined catalyst for ester, ether, thioether, and dithioacetal formation in water. J. Am. Chem. Soc. 124, 11971–11978 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Harmer, M.A. & Sun, Q. Solid acid catalysis using ion-exchange resins. Appl. Catal. A Gen. 221, 45–62 (2001).

    Article  CAS  Google Scholar 

  10. Resch, V. & Hanefeld, U. The selective addition of water. Catal. Sci. Technol. 5, 1385–1399 (2015).

    Article  CAS  Google Scholar 

  11. Jin, J. & Hanefeld, U. The selective addition of water to C=C bonds; enzymes are the best chemists. Chem. Commun. (Camb.) 47, 2502–2510 (2011).

    Article  CAS  Google Scholar 

  12. Tong, I.T., Liao, H.H. & Cameron, D.C. 1,3-Propanediol production by Escherichia coli expressing genes from the Klebsiella pneumoniae dha regulon. Appl. Environ. Microbiol. 57, 3541–3546 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Biebl, H., Menzel, K., Zeng, A.-P. & Deckwer, W.-D. Microbial production of 1,3-propanediol. Appl. Microbiol. Biotechnol. 52, 289–297 (1999).

    Article  CAS  PubMed  Google Scholar 

  14. Jiang, W., Wang, S., Wang, Y. & Fang, B. Key enzymes catalyzing glycerol to 1,3-propanediol. Biotechnol. Biofuels 9, 57 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Liu, J.Z., Xu, W., Chistoserdov, A. & Bajpai, R.K. Glycerol dehydratases: biochemical structures, catalytic mechanisms, and industrial applications in 1,3-propanediol production by naturally occurring and genetically engineered bacterial strains. Appl. Biochem. Biotechnol. 179, 1073–1100 (2016).

    Article  CAS  PubMed  Google Scholar 

  16. Volkov, A. et al. Myosin cross-reactive antigen of Streptococcus pyogenes M49 encodes a fatty acid double bond hydratase that plays a role in oleic acid detoxification and bacterial virulence. J. Biol. Chem. 285, 10353–10361 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Turbek, C.S., Smith, D.A. & Schardl, C.L. An extracellular enzyme from Fusarium solani f. sp. phaseoli which catalyses hydration of the isoflavonoid phytoalexin, phaseollidin. FEMS Microbiol. Lett. 73, 187–190 (1992).

    Article  CAS  PubMed  Google Scholar 

  18. Wuensch, C. et al. Asymmetric enzymatic hydration of hydroxystyrene derivatives. Angew. Chem. Int. Ed. Engl. 52, 2293–2297 (2013).

    Article  CAS  PubMed  Google Scholar 

  19. Brodkorb, D., Gottschall, M., Marmulla, R., Lüddeke, F. & Harder, J. Linalool dehydratase-isomerase, a bifunctional enzyme in the anaerobic degradation of monoterpenes. J. Biol. Chem. 285, 30436–30442 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lüddeke, F. et al. Geraniol and geranial dehydrogenases induced in anaerobic monoterpene degradation by Castellaniella defragrans. Appl. Environ. Microbiol. 78, 2128–2136 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Lüddeke, F., Dikfidan, A. & Harder, J. Physiology of deletion mutants in the anaerobic β-myrcene degradation pathway in Castellaniella defragrans. BMC Microbiol. 12, 192 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Foss, S., Heyen, U. & Harder, J. Alcaligenes defragrans sp. nov., description of four strains isolated on alkenoic monoterpenes ((+)-menthene, alpha-pinene, 2-carene, and alpha-phellandrene) and nitrate. Syst. Appl. Microbiol. 21, 237–244 (1998).

    Article  CAS  PubMed  Google Scholar 

  23. Heyen, U. & Harder, J. Geranic acid formation, an initial reaction of anaerobic monoterpene metabolism in denitrifying Alcaligenes defragrans. Appl. Environ. Microbiol. 66, 3004–3009 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Marmulla, R., Šafaric, B., Markert, S., Schweder, T. & Harder, J. Linalool isomerase, a membrane-anchored enzyme in the anaerobic monoterpene degradation in Thauera linaloolentis 47Lol. BMC Biochem. 17, 1–11 (2016).

    Article  Google Scholar 

  25. Weidenweber, S., Marmulla, R., Ermler, U. & Harder, J. X-ray structure of linalool dehydratase/isomerase from Castellaniella defragrans reveals enzymatic alkene synthesis. FEBS Lett. 590, 1375–1383 (2016).

    Article  CAS  PubMed  Google Scholar 

  26. Lüddeke, F. & Harder, J. Enantiospecific (S)-(+)-linalool formation from β-myrcene by linalool dehydratase-isomerase. Z. Naturforsch. C 66, 409–412 (2011).

    PubMed  Google Scholar 

  27. Holm, L. & Rosenström, P. Dali server: conservation mapping in 3D. Nucleic Acids Res. 38, W545–W549 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Itoh, T., Ochiai, A., Mikami, B., Hashimoto, W. & Murata, K. Structure of unsaturated rhamnogalacturonyl hydrolase complexed with substrate. Biochem. Biophys. Res. Commun. 347, 1021–1029 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Fujiwara, T. et al. Crystal structure of Ruminococcus albus cellobiose 2-epimerase: structural insights into epimerization of unmodified sugar. FEBS Lett. 587, 840–846 (2013).

    Article  CAS  PubMed  Google Scholar 

  30. Oldfield, E. & Lin, F.Y. Terpene biosynthesis: modularity rules. Angew. Chem. Int. Ed. Engl. 51, 1124–1137 (2012).

    Article  CAS  PubMed  Google Scholar 

  31. Krissinel, E. & Henrick, K. Inference of macromolecular assemblies from crystalline state. J. Mol. Biol. 372, 774–797 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Lakshminarasimhan, M., Madzelan, P., Nan, R., Milkovic, N.M. & Wilson, M.A. Evolution of new enzymatic function by structural modulation of cysteine reactivity in Pseudomonas fluorescens isocyanide hydratase. J. Biol. Chem. 285, 29651–29661 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gao, J., Liao, J. & Yang, G.Y. CAAX-box protein, prenylation process and carcinogenesis. Am. J. Transl. Res. 1, 312–325 (2009).

    PubMed  PubMed Central  Google Scholar 

  34. Levine, R.L., Mosoni, L., Berlett, B.S. & Stadtman, E.R. Methionine residues as endogenous antioxidants in proteins. Proc. Natl. Acad. Sci. USA 93, 15036–15040 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Stadtman, E.R., Moskovitz, J., Berlett, B.S. & Levine, R.L. Cyclic oxidation and reduction of protein methionine residues is an important antioxidant mechanism. Mol. Cell. Biochem. 234-235, 3–9 (2002).

    Article  PubMed  Google Scholar 

  36. Marliere, P., Delcourt, M. & Mazaleyrat, S. Alkenol dehydratase variants. WO patent 2014184345 A1 (2014).

  37. Overman, L.E. A general method for the synthesis of amines by the rearrangement of allylic trichloroacetimidates. 1,3-Transposition of alcohol and amine functions. J. Am. Chem. Soc. 98, 2901–2910 (1976).

    Article  CAS  Google Scholar 

  38. Willimann, L. & Schinz, H. Über 7-Methyl-octadien-(2,6)-ol-(1), ein 'Apogeraniol'. Helv. Chim. Acta 35, 2401–2406 (1952).

    Article  CAS  Google Scholar 

  39. Schwartz, B.D. et al. Towards the total synthesis of vibsanin E, 15-O-methylcyclovibsanin B, 3-hydroxyvibsanin E, furanovibsanin A, and 3-O-methylfuranovibsanin A. Eur. J. Org. Chem. 2006, 3181–3192 (2006).

    Article  Google Scholar 

  40. Kabsch, W. XDS. Acta Crystallogr. D Biol. Crystallogr. 66, 125–132 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Evans, P.R. & Murshudov, G.N. How good are my data and what is the resolution? Acta Crystallogr. D Biol. Crystallogr. 69, 1204–1214 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Winter, G. xia2: An expert system for macromolecular crystallography data reduction. J. Appl. Cryst. 43, 186–190 (2010).

    Article  CAS  Google Scholar 

  43. Sheldrick, G.M. Experimental phasing with SHELXC/D/E: combining chain tracing with density modification. Acta Crystallogr. D Biol. Crystallogr. 66, 479–485 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Cowtan, K. Recent developments in classical density modification. Acta Crystallogr. D Biol. Crystallogr. 66, 470–478 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Cowtan, K. Fitting molecular fragments into electron density. Acta Crystallogr. D Biol. Crystallogr. 64, 83–89 (2008).

    Article  CAS  PubMed  Google Scholar 

  46. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240–255 (1997).

    Article  CAS  PubMed  Google Scholar 

  47. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    PubMed  Google Scholar 

  48. Laskowski, R.A., MacArthur, M.W., Moss, D.S. & Thornton, J.M. PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 26, 283–291 (1993).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project has received funding from the European Union's Horizon 2020 research and innovation programme (EmPowerPutida) under grant agreement no. 635536 (to B.H.). This work was supported by the Diamond Light Source for access to beamlines I02 and I04 under proposed number mx-9948 (to G.G.).

Author information

Authors and Affiliations

Authors

Contributions

S.P., H.T.H., H.M., M.O., J.P.T. and G.G. conceived and designed the crystallization experiments and performed 3D structure determination. S.R., R.J.H., R.S., M.A.N., E.C.R. S.V.D. and S.J.C. created and characterized all of the LinD mutants used. C.G., M.-P.F. and B.M.N. performed biotransformations and contributed to data analysis. B.M.N., G.G. and B.H. wrote the manuscript. All authors revised and contributed to the manuscript.

Corresponding author

Correspondence to Bernhard Hauer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Tables 1–3 and Supplementary Figures 1–4. (PDF 828 kb)

Supplementary Note

Synthetic Procedures. (PDF 640 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nestl, B., Geinitz, C., Popa, S. et al. Structural and functional insights into asymmetric enzymatic dehydration of alkenols. Nat Chem Biol 13, 275–281 (2017). https://doi.org/10.1038/nchembio.2271

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2271

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing