Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Orthogonal lipid sensors identify transbilayer asymmetry of plasma membrane cholesterol

Abstract

Controlled distribution of lipids across various cell membranes is crucial for cell homeostasis and regulation. We developed an imaging method that allows simultaneous in situ quantification of cholesterol in two leaflets of the plasma membrane (PM) using tunable orthogonal cholesterol sensors. Our imaging revealed marked transbilayer asymmetry of PM cholesterol (TAPMC) in various mammalian cells, with the concentration in the inner leaflet (IPM) being 12-fold lower than that in the outer leaflet (OPM). The asymmetry was maintained by active transport of cholesterol from IPM to OPM and its chemical retention at OPM. Furthermore, the increase in the IPM cholesterol level was triggered in a stimulus-specific manner, allowing cholesterol to serve as a signaling lipid. We found excellent correlation between the IPM cholesterol level and cellular Wnt signaling activity, suggesting that TAPMC and stimulus-induced PM cholesterol redistribution are crucial for tight regulation of cellular processes under physiological conditions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Simultaneous quantification of OPM ([Chol]o) and IPM cholesterol ([Chol]i) of HeLa cells by orthogonal cholesterol sensors.
Figure 2: Stimulus-induced increases in [Chol]i (Δ[Chol]i) in HeLa cells.
Figure 3: Mechanisms for PM transbilayer asymmetry of cholesterol and its physiological relevance.

Similar content being viewed by others

References

  1. Op den Kamp, J.A. Lipid asymmetry in membranes. Annu. Rev. Biochem. 48, 47–71 (1979).

    Article  CAS  PubMed  Google Scholar 

  2. van Meer, G. Dynamic transbilayer lipid asymmetry. Cold Spring Harb. Perspect. Biol. 3, a004671 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Murate, M. & Kobayashi, T. Revisiting transbilayer distribution of lipids in the plasma membrane. Chem. Phys. Lipids 194, 58–71 (2016).

    Article  CAS  PubMed  Google Scholar 

  4. Yeagle, P.L. Cholesterol and the cell membrane. Biochim. Biophys. Acta 822, 267–287 (1985).

    Article  CAS  PubMed  Google Scholar 

  5. Maxfield, F.R. & Tabas, I. Role of cholesterol and lipid organization in disease. Nature 438, 612–621 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Ikonen, E. Cellular cholesterol trafficking and compartmentalization. Nat. Rev. Mol. Cell Biol. 9, 125–138 (2008).

    Article  CAS  PubMed  Google Scholar 

  7. Goldstein, J.L. & Brown, M.S. A century of cholesterol and coronaries: from plaques to genes to statins. Cell 161, 161–172 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lange, Y., Swaisgood, M.H., Ramos, B.V. & Steck, T.L. Plasma membranes contain half the phospholipid and 90% of the cholesterol and sphingomyelin in cultured human fibroblasts. J. Biol. Chem. 264, 3786–3793 (1989).

    CAS  PubMed  Google Scholar 

  9. Ray, T.K., Skipski, V.P., Barclay, M., Essner, E. & Archibald, F.M. Lipid composition of rat liver plasma membranes. J. Biol. Chem. 244, 5528–5536 (1969).

    CAS  PubMed  Google Scholar 

  10. Das, A., Brown, M.S., Anderson, D.D., Goldstein, J.L. & Radhakrishnan, A. Three pools of plasma membrane cholesterol and their relation to cholesterol homeostasis. eLife 3 (2014).

  11. Fantini, J. & Barrantes, F.J. How cholesterol interacts with membrane proteins: an exploration of cholesterol-binding sites including CRAC, CARC, and tilted domains. Front. Physiol. 4, 31 (2013).

    PubMed  PubMed Central  Google Scholar 

  12. Lingwood, D. & Simons, K. Lipid rafts as a membrane-organizing principle. Science 327, 46–50 (2010).

    Article  CAS  PubMed  Google Scholar 

  13. Hulce, J.J., Cognetta, A.B., Niphakis, M.J., Tully, S.E. & Cravatt, B.F. Proteome-wide mapping of cholesterol-interacting proteins in mammalian cells. Nat. Methods 10, 259–264 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Sheng, R. et al. Cholesterol modulates cell signaling and protein networking by specifically interacting with PDZ domain-containing scaffold proteins. Nat. Commun. 3, 1249 (2012).

    Article  CAS  PubMed  Google Scholar 

  15. Sheng, R. et al. Cholesterol selectively activates canonical Wnt signalling over non-canonical Wnt signalling. Nat. Commun. 5, 4393 (2014).

    Article  CAS  PubMed  Google Scholar 

  16. Wang, P.Y., Weng, J. & Anderson, R.G. OSBP is a cholesterol-regulated scaffolding protein in control of ERK 1/2 activation. Science 307, 1472–1476 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Brachet, A. et al. LTP-triggered cholesterol redistribution activates Cdc42 and drives AMPA receptor synaptic delivery. J. Cell Biol. 208, 791–806 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Frechin, M. et al. Cell-intrinsic adaptation of lipid composition to local crowding drives social behaviour. Nature 523, 88–91 (2015).

    Article  CAS  PubMed  Google Scholar 

  19. Pagler, T.A. et al. Deletion of ABCA1 and ABCG1 impairs macrophage migration because of increased Rac1 signaling. Circ. Res. 108, 194–200 (2011).

    Article  CAS  PubMed  Google Scholar 

  20. Goldstein, J.L., DeBose-Boyd, R.A. & Brown, M.S. Protein sensors for membrane sterols. Cell 124, 35–46 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Gimpl, G. Cholesterol-protein interaction: methods and cholesterol reporter molecules. Subcell. Biochem. 51, 1–45 (2010).

    Article  CAS  PubMed  Google Scholar 

  22. Mondal, M., Mesmin, B., Mukherjee, S. & Maxfield, F.R. Sterols are mainly in the cytoplasmic leaflet of the plasma membrane and the endocytic recycling compartment in CHO cells. Mol. Biol. Cell 20, 581–588 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Das, A., Goldstein, J.L., Anderson, D.D., Brown, M.S. & Radhakrishnan, A. Use of mutant 125I-perfringolysin O to probe transport and organization of cholesterol in membranes of animal cells. Proc. Natl. Acad. Sci. USA 110, 10580–10585 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Maekawa, M. & Fairn, G.D. Complementary probes reveal that phosphatidylserine is required for the proper transbilayer distribution of cholesterol. J. Cell Sci. 128, 1422–1433 (2015).

    Article  CAS  PubMed  Google Scholar 

  25. Várnai, P. & Balla, T. Live cell imaging of phosphoinositide dynamics with fluorescent protein domains. Biochim. Biophys. Acta 1761, 957–967 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Irvine, R. Inositol lipids: to PHix or not to PHix? Curr. Biol. 14, R308–R310 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Yoon, Y., Lee, P.J., Kurilova, S. & Cho, W. In situ quantitative imaging of cellular lipids using molecular sensors. Nat. Chem. 3, 868–874 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ramachandran, R., Heuck, A.P., Tweten, R.K. & Johnson, A.E. Structural insights into the membrane-anchoring mechanism of a cholesterol-dependent cytolysin. Nat. Struct. Biol. 9, 823–827 (2002).

    CAS  PubMed  Google Scholar 

  29. Shimada, Y., Maruya, M., Iwashita, S. & Ohno-Iwashita, Y. The C-terminal domain of perfringolysin O is an essential cholesterol-binding unit targeting to cholesterol-rich microdomains. Eur. J. Biochem. 269, 6195–6203 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Heuck, A.P., Moe, P.C. & Johnson, B.B. The cholesterol-dependent cytolysin family of gram-positive bacterial toxins. Subcell. Biochem. 51, 551–577 (2010).

    Article  CAS  PubMed  Google Scholar 

  31. Sumandea, M., Das, S., Sumandea, C. & Cho, W. Roles of aromatic residues in high interfacial activity of Naja naja atra phospholipase A2. Biochemistry 38, 16290–16297 (1999).

    Article  CAS  PubMed  Google Scholar 

  32. Cho, W. & Stahelin, R.V. Membrane-protein interactions in cell signaling and membrane trafficking. Annu. Rev. Biophys. Biomol. Struct. 34, 119–151 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Liu, S.L. et al. Simultaneous in situ quantification of two cellular lipid pools using orthogonal fluorescent sensors. Angew. Chem. Int. Edn Engl. 53, 14387–14391 (2014).

    Article  CAS  Google Scholar 

  34. Radhakrishnan, A., Goldstein, J.L., McDonald, J.G. & Brown, M.S. Switch-like control of SREBP-2 transport triggered by small changes in ER cholesterol: a delicate balance. Cell Metab. 8, 512–521 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Farrand, A.J., LaChapelle, S., Hotze, E.M., Johnson, A.E. & Tweten, R.K. Only two amino acids are essential for cytolytic toxin recognition of cholesterol at the membrane surface. Proc. Natl. Acad. Sci. USA 107, 4341–4346 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Zidovetzki, R. & Levitan, I. Use of cyclodextrins to manipulate plasma membrane cholesterol content: evidence, misconceptions and control strategies. Biochim. Biophys. Acta 1768, 1311–1324 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sprong, H., van der Sluijs, P. & van Meer, G. How proteins move lipids and lipids move proteins. Nat. Rev. Mol. Cell Biol. 2, 504–513 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Hamilton, J.A. Fast flip-flop of cholesterol and fatty acids in membranes: implications for membrane transport proteins. Curr. Opin. Lipidol. 14, 263–271 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Voelker, D.R. Genetic and biochemical analysis of non-vesicular lipid traffic. Annu. Rev. Biochem. 78, 827–856 (2009).

    Article  CAS  PubMed  Google Scholar 

  40. Chang, T.Y., Chang, C.C., Ohgami, N. & Yamauchi, Y. Cholesterol sensing, trafficking, and esterification. Annu. Rev. Cell Dev. Biol. 22, 129–157 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Raiborg, C., Wenzel, E.M. & Stenmark, H. ER-endosome contact sites: molecular compositions and functions. EMBO J. 34, 1848–1858 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Westerterp, M. et al. ATP-binding cassette transporters, atherosclerosis, and inflammation. Circ. Res. 114, 157–170 (2014).

    Article  CAS  PubMed  Google Scholar 

  43. Chu, B.B. et al. Cholesterol transport through lysosome-peroxisome membrane contacts. Cell 161, 291–306 (2015).

    Article  CAS  PubMed  Google Scholar 

  44. Kobayashi, A. et al. Efflux of sphingomyelin, cholesterol, and phosphatidylcholine by ABCG1. J. Lipid Res. 47, 1791–1802 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. Luu, W., Sharpe, L.J., Gelissen, I.C. & Brown, A.J. The role of signalling in cellular cholesterol homeostasis. IUBMB Life 65, 675–684 (2013).

    Article  CAS  PubMed  Google Scholar 

  46. Nagao, K., Tomioka, M. & Ueda, K. Function and regulation of ABCA1--membrane meso-domain organization and reorganization. FEBS J. 278, 3190–3203 (2011).

    Article  CAS  PubMed  Google Scholar 

  47. Amanchy, R. et al. A curated compendium of phosphorylation motifs. Nat. Biotechnol. 25, 285–286 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Tanaka, A.R. et al. Effects of mutations of ABCA1 in the first extracellular domain on subcellular trafficking and ATP binding/hydrolysis. J. Biol. Chem. 278, 8815–8819 (2003).

    Article  CAS  PubMed  Google Scholar 

  49. Silvente-Poirot, S. & Poirot, M. Cholesterol metabolism and cancer: the good, the bad and the ugly. Curr. Opin. Pharmacol. 12, 673–676 (2012).

    Article  CAS  PubMed  Google Scholar 

  50. Nelson, E.R. et al. 27-Hydroxycholesterol links hypercholesterolemia and breast cancer pathophysiology. Science 342, 1094–1098 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Stahelin, R.V. et al. Mechanism of diacylglycerol-induced membrane targeting and activation of protein kinase Cdelta. J. Biol. Chem. 279, 29501–29512 (2004).

    Article  CAS  PubMed  Google Scholar 

  52. Yamamoto, H., Komekado, H. & Kikuchi, A. Caveolin is necessary for Wnt-3a-dependent internalization of LRP6 and accumulation of beta-catenin. Dev. Cell 11, 213–223 (2006).

    Article  CAS  PubMed  Google Scholar 

  53. Blitzer, J.T. & Nusse, R. A critical role for endocytosis in Wnt signaling. BMC Cell Biol. 7, 28 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank A. Heuck (University of Massachusetts) for a kind gift of the D4 domain construct and P. Subbaiah, T. Steck and Y. Lange for helpful discussion. This work was supported by the grants from the US National Institutes of Health (GM68849 and GM110128 to W.C. and HL-073965 and HL-083298 to I.L.) and from the Japan Society for the Promotion of Science (25221203 to K.U.).

Author information

Authors and Affiliations

Authors

Contributions

R.S. contributed to sensor development and other biochemical studies and S.-L.L. performed all imaging work. L.W., S.S., R.K.B., R.A.W. and I.L. contributed to cell studies. J.H.J., K.B. and K.-P.K. performed MS analysis and K.U. contributed to lipid transporter studies. M.J.O'C. and D.L. prepared fluorophores. E.S. participated in sensor preparation. W.C. conceived the work and wrote the paper.

Corresponding author

Correspondence to Wonhwa Cho.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Tables 1–3, and Supplementary Figures 1–6. (PDF 1908 kb)

Supplementary Video 1

A 300x time-lapse video of spatiotemporal [Chol]o fluctuation. (MOV 163 kb)

Supplementary Video 2

A 300x time-lapse video of spatiotemporal [Chol]i fluctuation. (MOV 103 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, SL., Sheng, R., Jung, J. et al. Orthogonal lipid sensors identify transbilayer asymmetry of plasma membrane cholesterol. Nat Chem Biol 13, 268–274 (2017). https://doi.org/10.1038/nchembio.2268

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2268

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing