Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Inhibition of innate immune cytosolic surveillance by an M. tuberculosis phosphodiesterase

Abstract

Mycobacterium tuberculosis infection leads to cytosolic release of the bacterial cyclic dinucleotide (CDN) c-di-AMP and a host-generated CDN, cGAMP, both of which trigger type I interferon (IFN) expression in a STING-dependent manner. Here we report that M. tuberculosis has developed a mechanism to inhibit STING activation and the type I IFN response via the bacterial phosphodiesterase (PDE) CdnP, which mediates hydrolysis of both bacterial-derived c-di-AMP and host-derived cGAMP. Mutation of cdnP attenuates M. tuberculosis virulence, as does loss of a host CDN PDE known as ENPP1. CdnP is inhibited by both US Food and Drug Administration (FDA)-approved PDE inhibitors and nonhydrolyzable dinucleotide mimetics specifically designed to target the enzyme. These findings reveal a crucial role of CDN homeostasis in governing the outcome of M. tuberculosis infection as well as a unique mechanism of subversion of the host's cytosolic surveillance pathway (CSP) by a bacterial PDE that may serve as an attractive antimicrobial target.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: M. tuberculosis CdnP hydrolyzes both bacterial and host CDNs.
Figure 2: Disruption of CdnP activity leads to virulence attenuation of M. tuberculosis.
Figure 3: CdnP activity regulates host CSP activation and type I IFN responses.
Figure 4: Regulation of intramacrophage CDN homeostasis by bacterial CdnP and host ENPP1.
Figure 5: Inhibition of CdnP by PDE inhibitors and ApA analogs.
Figure 6: A schematic model for regulation of CDN signaling and inhibition of cGAS-mediated innate surveillance by M. tuberculosis CdnP.

Similar content being viewed by others

References

  1. Kalia, D. et al. Nucleotide, c-di-GMP, c-di-AMP, cGMP, cAMP, (p)ppGpp signaling in bacteria and implications in pathogenesis. Chem. Soc. Rev. 42, 305–341 (2013).

    CAS  PubMed  Google Scholar 

  2. Römling, U. Great times for small molecules: c-di-AMP, a second messenger candidate in Bacteria and Archaea. Sci. Signal. 1, pe39 (2008).

    PubMed  Google Scholar 

  3. Corrigan, R.M. & Gründling, A. Cyclic di-AMP: another second messenger enters the fray. Nat. Rev. Microbiol. 11, 513–524 (2013).

    CAS  PubMed  Google Scholar 

  4. Bowie, A.G. Innate sensing of bacterial cyclic dinucleotides: more than just STING. Nat. Immunol. 13, 1137–1139 (2012).

    CAS  PubMed  Google Scholar 

  5. Parvatiyar, K. et al. The helicase DDX41 recognizes the bacterial secondary messengers cyclic di-GMP and cyclic di-AMP to activate a type I interferon immune response. Nat. Immunol. 13, 1155–1161 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Woodward, J.J., Iavarone, A.T. & Portnoy, D.A. c-di-AMP secreted by intracellular Listeria monocytogenes activates a host type I interferon response. Science 328, 1703–1705 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Dey, B. & Bishai, W.R. Crosstalk between Mycobacterium tuberculosis and the host cell. Semin. Immunol. 26, 486–496 (2014).

    PubMed  PubMed Central  Google Scholar 

  8. Burdette, D.L. et al. STING is a direct innate immune sensor of cyclic di-GMP. Nature 478, 515–518 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Fitzgerald, K.A. et al. IKKɛ and TBK1 are essential components of the IRF3 signaling pathway. Nat. Immunol. 4, 491–496 (2003).

    CAS  Google Scholar 

  10. Dey, B. et al. A bacterial cyclic dinucleotide activates the cytosolic surveillance pathway and mediates innate resistance to tuberculosis. Nat. Med. 21, 401–406 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Diner, E.J. et al. The innate immune DNA sensor cGAS produces a noncanonical cyclic dinucleotide that activates human STING. Cell Rep. 3, 1355–1361 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Collins, A.C. et al. Cyclic GMP-AMP synthase is an innate immune DNA sensor for Mycobacterium tuberculosis. Cell Host Microbe 17, 820–828 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Gao, D. et al. Cyclic GMP-AMP synthase is an innate immune sensor of HIV and other retroviruses. Science 341, 903–906 (2013).

    CAS  PubMed  Google Scholar 

  14. Zhang, Y. et al. The DNA sensor, cyclic GMP-AMP synthase, is essential for induction of IFN-β during Chlamydia trachomatis infection. J. Immunol. 193, 2394–2404 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Wassermann, R. et al. Mycobacterium tuberculosis differentially activates cGAS- and inflammasome-dependent intracellular immune responses through ESX-1. Cell Host Microbe 17, 799–810 (2015).

    CAS  PubMed  Google Scholar 

  16. Li, X.D. et al. Pivotal roles of cGAS-cGAMP signaling in antiviral defense and immune adjuvant effects. Science 341, 1390–1394 (2013).

    CAS  PubMed  Google Scholar 

  17. Sun, L., Wu, J., Du, F., Chen, X. & Chen, Z.J. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science 339, 786–791 (2013).

    CAS  Google Scholar 

  18. Wu, J. et al. Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA. Science 339, 826–830 (2013).

    CAS  Google Scholar 

  19. Hansen, K. et al. Listeria monocytogenes induces IFNβ expression through an IFI16-, cGAS- and STING-dependent pathway. EMBO J. 33, 1654–1666 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Lahaye, X. et al. The capsids of HIV-1 and HIV-2 determine immune detection of the viral cDNA by the innate sensor cGAS in dendritic cells. Immunity 39, 1132–1142 (2013).

    CAS  PubMed  Google Scholar 

  21. Orzalli, M.H., DeLuca, N.A. & Knipe, D.M. Nuclear IFI16 induction of IRF-3 signaling during herpesviral infection and degradation of IFI16 by the viral ICP0 protein. Proc. Natl. Acad. Sci. USA 109, E3008–E3017 (2012).

    CAS  PubMed  Google Scholar 

  22. Li, T., Chen, J. & Cristea, I.M. Human cytomegalovirus tegument protein pUL83 inhibits IFI16-mediated DNA sensing for immune evasion. Cell Host Microbe 14, 591–599 (2013).

    CAS  PubMed  Google Scholar 

  23. Wu, J.J. et al. Inhibition of cGAS DNA sensing by a herpesvirus virion protein. Cell Host Microbe 18, 333–344 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Lau, L., Gray, E.E., Brunette, R.L. & Stetson, D.B. DNA tumor virus oncogenes antagonize the cGAS-STING DNA-sensing pathway. Science 350, 568–571 (2015).

    CAS  PubMed  Google Scholar 

  25. Yang, J. et al. Deletion of the cyclic di-AMP phosphodiesterase gene (cnpB) in Mycobacterium tuberculosis leads to reduced virulence in a mouse model of infection. Mol. Microbiol. 93, 65–79 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Manikandan, K. et al. Two-step synthesis and hydrolysis of cyclic di-AMP in Mycobacterium tuberculosis. PLoS One 9, e86096 (2014).

    PubMed  PubMed Central  Google Scholar 

  27. Postic, G., Danchin, A. & Mechold, U. Characterization of NrnA homologs from Mycobacterium tuberculosis and Mycoplasma pneumoniae. RNA 18, 155–165 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Bai, Y. et al. Two DHH subfamily 1 proteins in Streptococcus pneumoniae possess cyclic di-AMP phosphodiesterase activity and affect bacterial growth and virulence. J. Bacteriol. 195, 5123–5132 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Cho, K.H. & Kang, S.O. Streptococcus pyogenes c-di-AMP phosphodiesterase, GdpP, influences SpeB processing and virulence. PLoS One 8, e69425 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Du, B. et al. Functional analysis of c-di-AMP phosphodiesterase, GdpP, in Streptococcus suis serotype 2. Microbiol. Res. 169, 749–758 (2014).

    CAS  PubMed  Google Scholar 

  31. Rao, F. et al. YybT is a signaling protein that contains a cyclic dinucleotide phosphodiesterase domain and a GGDEF domain with ATPase activity. J. Biol. Chem. 285, 473–482 (2010).

    CAS  PubMed  Google Scholar 

  32. Srivastav, R. et al. Unique subunit packing in mycobacterial nanoRNase leads to alternate substrate recognitions in DHH phosphodiesterases. Nucleic Acids Res. 42, 7894–7910 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Lamichhane, G. et al. A postgenomic method for predicting essential genes at subsaturation levels of mutagenesis: application to Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA 100, 7213–7218 (2003).

    CAS  PubMed  Google Scholar 

  34. Corrigan, R.M., Abbott, J.C., Burhenne, H., Kaever, V. & Gründling, A. c-di-AMP is a new second messenger in Staphylococcus aureus with a role in controlling cell size and envelope stress. PLoS Pathog. 7, e1002217 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang, J. et al. Conservative change to the phosphate moiety of cyclic diguanylic monophosphate remarkably affects its polymorphism and ability to bind DGC, PDE, and PilZ proteins. J. Am. Chem. Soc. 133, 9320–9330 (2011).

    CAS  PubMed  Google Scholar 

  36. Witte, C.E. et al. Cyclic di-AMP is critical for Listeria monocytogenes growth, cell wall homeostasis, and establishment of infection. MBio 4, e00282–13 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Watson, R.O. et al. The cytosolic sensor cGAS detects Mycobacterium tuberculosis DNA to induce type I interferons and activate autophagy. Cell Host Microbe 17, 811–819 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Li, L. et al. Hydrolysis of 2′3′-cGAMP by ENPP1 and design of nonhydrolyzable analogs. Nat. Chem. Biol. 10, 1043–1048 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Kubota, K. et al. Identification of 2′-phosphodiesterase, which plays a role in the 2-5A system regulated by interferon. J. Biol. Chem. 279, 37832–37841 (2004).

    CAS  PubMed  Google Scholar 

  40. Rorbach, J., Nicholls, T.J. & Minczuk, M. PDE12 removes mitochondrial RNA poly(A) tails and controls translation in human mitochondria. Nucleic Acids Res. 39, 7750–7763 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Kim, M.J. et al. Caseation of human tuberculosis granulomas correlates with elevated host lipid metabolism. EMBO Mol. Med. 2, 258–274 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Rachman, H. et al. Unique transcriptome signature of Mycobacterium tuberculosis in pulmonary tuberculosis. Infect. Immun. 74, 1233–1242 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Konno, H., Konno, K. & Barber, G.N. Cyclic dinucleotides trigger ULK1 (ATG1) phosphorylation of STING to prevent sustained innate immune signaling. Cell 155, 688–698 (2013).

    CAS  PubMed  Google Scholar 

  44. Liang, Q. et al. Crosstalk between the cGAS DNA sensor and Beclin-1 autophagy protein shapes innate antimicrobial immune responses. Cell Host Microbe 15, 228–238 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Målen, H., Pathak, S., Søfteland, T., de Souza, G.A. & Wiker, H.G. Definition of novel cell envelope associated proteins in Triton X-114 extracts of Mycobacterium tuberculosis H37Rv. BMC Microbiol. 10, 132 (2010).

    PubMed  PubMed Central  Google Scholar 

  46. Ablasser, A. et al. Cell intrinsic immunity spreads to bystander cells via the intercellular transfer of cGAMP. Nature 503, 530–534 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Andrade, W.A. et al. Group B Streptococcus degrades cyclic-di-AMP to modulate STING-dependent type I interferon production. Cell Host Microbe 20, 49–59 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Barker, J.R. et al. STING-dependent recognition of cyclic di-AMP mediates type I interferon responses during Chlamydia trachomatis infection. MBio 4, e00018–13 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Schoonmaker, M.K., Bishai, W.R. & Lamichhane, G. Nonclassical transpeptidases of Mycobacterium tuberculosis alter cell size, morphology, the cytosolic matrix, protein localization, virulence, and resistance to β-lactams. J. Bacteriol. 196, 1394–1402 (2014).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge support from NIAID (grants AI037856, AI097138, and AI036973 to W.R.B.), the Howard Hughes Medical Institute (W.R.B.), and the NSF (grants CHE 1307218 and CHE 1636752 to H.O.S.). Funding from the Camille and Dreyfus Foundation (Teacher-Scholar fellowship to H.O.S.) is also acknowledged. Y.Z. is supported by a Mehta Research Award. J.Z. is supported by a University of Maryland Graduate Dean's Dissertation Fellowship. We thank B. Roembke at UMD for help with dinucleotide synthesis. We thank H.W. Virgin IV and D. MacDuff (Washington University School of Medicine, St. Louis, Missouri, USA) for generously providing bone marrow cells from cGAS-deficient mice. We thank A. Sher and K. Mayer-Barber (NIH, Bethesda, Maryland, USA) for generously providing Ifnar1−/− mice. We thank K.-P. Hopfner (Department of Biochemistry and Gene Center, Ludwig-Maximilians-University, Munich, Germany) for providing the plasmid to make DisA. We thank A. Gründling (Section of Microbiology and MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK) for providing the plasmid to make GdpP. We thank Z.-X. Liang (Division of Structural Biology and Biochemistry, School of Biological Sciences, Nanyang Technological University, Singapore) for providing the plasmid to make YybT. We thank S. Pelly for editing the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

R.J.D., B.D., and Y.Z. designed the experiments in consultation with W.R.B. and H.O.S. Molecular biology, microbiology, cell culture, and animal-based experiments were performed by R.J.D. and B.D. Y.Z. performed biochemical enzymatic assays. J.Z. and D.S. performed chemical synthesis of compounds. L.S.C. contributed to mass spectrometry experiments. P.K. and G.L. contributed to isothermal titration calorimetry experiments. H.G. contributed to mouse experiments. R.J.D. and B.D. wrote the manuscript with input from Y.Z., J.Z., D.S., P.K., L.S.C., H.O.S., and W.R.B. W.R.B. provided overall supervision of the study. All the authors contributed to editing of the manuscript and approved the conclusions.

Corresponding authors

Correspondence to Herman O Sintim or William R Bishai.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Tables 1–4 and Supplementary Figures 1–19. (PDF 1856 kb)

Supplementary Note

Synthetic Procedures. (PDF 1427 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dey, R., Dey, B., Zheng, Y. et al. Inhibition of innate immune cytosolic surveillance by an M. tuberculosis phosphodiesterase. Nat Chem Biol 13, 210–217 (2017). https://doi.org/10.1038/nchembio.2254

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2254

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology