Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Klebsazolicin inhibits 70S ribosome by obstructing the peptide exit tunnel

Abstract

Whereas screening of the small-molecule metabolites produced by most cultivatable microorganisms often results in the rediscovery of known compounds, genome-mining programs allow researchers to harness much greater chemical diversity, and result in the discovery of new molecular scaffolds. Here we report the genome-guided identification of a new antibiotic, klebsazolicin (KLB), from Klebsiella pneumoniae that inhibits the growth of sensitive cells by targeting ribosomes. A ribosomally synthesized post-translationally modified peptide (RiPP), KLB is characterized by the presence of a unique N-terminal amidine ring that is essential for its activity. Biochemical in vitro studies indicate that KLB inhibits ribosomes by interfering with translation elongation. Structural analysis of the ribosome–KLB complex showed that the compound binds in the peptide exit tunnel overlapping with the binding sites of macrolides or streptogramin-B. KLB adopts a compact conformation and largely obstructs the tunnel. Engineered KLB fragments were observed to retain in vitro activity, and thus have the potential to serve as a starting point for the development of new bioactive compounds.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Organization of the biosynthetic gene cluster and production of KLB by the E. coli host.
Figure 2: KLB is an inhibitor of protein synthesis both in vitro and in vivo.
Figure 3: The structure of KLB in complex with 70S ribosome and A- and P-tRNAs.
Figure 4: Occlusion of the nascent peptide exit tunnel by antibiotics.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Lewis, K. Platforms for antibiotic discovery. Nat. Rev. Drug Discov. 12, 371–387 (2013).

    Article  CAS  PubMed  Google Scholar 

  2. Brown, E.D. & Wright, G.D. Antibacterial drug discovery in the resistance era. Nature 529, 336–343 (2016).

    Article  CAS  PubMed  Google Scholar 

  3. Laxminarayan, R. et al. Antibiotic resistance—the need for global solutions. Lancet Infect. Dis. 13, 1057–1098 (2013).

    Article  PubMed  Google Scholar 

  4. Walsh, C.T. & Wencewicz, T.A. Prospects for new antibiotics: a molecule-centered perspective. J. Antibiot. (Tokyo) 67, 7–22 (2014).

    Article  CAS  Google Scholar 

  5. Liu, Y.Y. et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect. Dis. 16, 161–168 (2016).

    Article  PubMed  CAS  Google Scholar 

  6. Doroghazi, J.R. et al. A roadmap for natural product discovery based on large-scale genomics and metabolomics. Nat. Chem. Biol. 10, 963–968 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Donia, M.S. et al. A systematic analysis of biosynthetic gene clusters in the human microbiome reveals a common family of antibiotics. Cell 158, 1402–1414 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zipperer, A. et al. Human commensals producing a novel antibiotic impair pathogen colonization. Nature 535, 511–516 (2016).

    Article  CAS  PubMed  Google Scholar 

  9. Donia, M.S. & Fischbach, M.A. Small molecules from the human microbiota. Science 349, 1254766 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Arnison, P.G. et al. Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature. Nat. Prod. Rep. 30, 108–160 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Oman, T.J. & van der Donk, W.A. Follow the leader: the use of leader peptides to guide natural product biosynthesis. Nat. Chem. Biol. 6, 9–18 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Koehnke, J. et al. The cyanobactin heterocyclase enzyme: a processive adenylase that operates with a defined order of reaction. Angew. Chem. Int. Edn. Engl. 52, 13991–13996 (2013).

    Article  CAS  Google Scholar 

  13. Dunbar, K.L. et al. Discovery of a new ATP-binding motif involved in peptidic azoline biosynthesis. Nat. Chem. Biol. 10, 823–829 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Burkhart, B.J., Schwalen, C.J., Mann, G., Naismith, J.H. & Mitchell, D.A. YcaO-dependent posttranslational amide activation: biosynthesis, structure, and function. Chem. Rev. 117, 5389–5456 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dunbar, K.L., Melby, J.O. & Mitchell, D.A. YcaO domains use ATP to activate amide backbones during peptide cyclodehydrations. Nat. Chem. Biol. 8, 569–575 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lee, S.W. et al. Discovery of a widely distributed toxin biosynthetic gene cluster. Proc. Natl. Acad. Sci. USA 105, 5879–5884 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cox, C.L., Doroghazi, J.R. & Mitchell, D.A. The genomic landscape of ribosomal peptides containing thiazole and oxazole heterocycles. BMC Genomics 16, 778 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Crone, W.J. et al. Dissecting bottromycin biosynthesis using comparative untargeted metabolomics. Angew. Chem. Int. Edn. Engl. 55, 9639–9643 (2016).

    Article  CAS  Google Scholar 

  19. San Millán, J.L., Kolter, R. & Moreno, F. Plasmid genes required for microcin B17 production. J. Bacteriol. 163, 1016–1020 (1985).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Huo, L., Rachid, S., Stadler, M., Wenzel, S.C. & Müller, R. Synthetic biotechnology to study and engineer ribosomal bottromycin biosynthesis. Chem. Biol. 19, 1278–1287 (2012).

    Article  CAS  PubMed  Google Scholar 

  21. Salomón, R.A. & Farías, R.N. The FhuA protein is involved in microcin 25 uptake. J. Bacteriol. 175, 7741–7742 (1993).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Laviña, M., Pugsley, A.P. & Moreno, F. Identification, mapping, cloning and characterization of a gene (sbmA) required for microcin B17 action on Escherichia coli K12. J. Gen. Microbiol. 132, 1685–1693 (1986).

    PubMed  Google Scholar 

  23. Patzer, S.I., Baquero, M.R., Bravo, D., Moreno, F. & Hantke, K. The colicin G, H and X determinants encode microcins M and H47, which might utilize the catecholate siderophore receptors FepA, Cir, Fiu and IroN. Microbiology 149, 2557–2570 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Runti, G. et al. Functional characterization of SbmA, a bacterial inner membrane transporter required for importing the antimicrobial peptide Bac7(1-35). J. Bacteriol. 195, 5343–5351 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Salomón, R.A. & Farías, R.N. The peptide antibiotic microcin 25 is imported through the TonB pathway and the SbmA protein. J. Bacteriol. 177, 3323–3325 (1995).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Novikova, M. et al. The Escherichia coli Yej transporter is required for the uptake of translation inhibitor microcin C. J. Bacteriol. 189, 8361–8365 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mattiuzzo, M. et al. Role of the Escherichia coli SbmA in the antimicrobial activity of proline-rich peptides. Mol. Microbiol. 66, 151–163 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Maio, A., Brandi, L., Donadio, S. & Gualerzi, C.O. The oligopeptide permease Opp mediates illicit transport of the bacterial P-site decoding inhibitor GE81112. Antibiotics (Basel) 5, 17 (2016).

    Article  CAS  Google Scholar 

  29. Vondenhoff, G.H. et al. Characterization of peptide chain length and constituency requirements for YejABEF-mediated uptake of microcin C analogues. J. Bacteriol. 193, 3618–3623 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Osterman, I.A. et al. Sorting out antibiotics' mechanisms of action: a double fluorescent protein reporter for high-throughput screening of ribosome and DNA biosynthesis inhibitors. Antimicrob. Agents Chemother. 60, 7481–7489 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Krizsan, A. et al. Insect-derived proline-rich antimicrobial peptides kill bacteria by inhibiting bacterial protein translation at the 70S ribosome. Angew. Chem. Int. Edn. Engl. 53, 12236–12239 (2014).

    Article  CAS  Google Scholar 

  32. Seefeldt, A.C. et al. Structure of the mammalian antimicrobial peptide Bac7(1-16) bound within the exit tunnel of a bacterial ribosome. Nucleic Acids Res. 44, 2429–2438 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Han, M.J., Lee, S.Y. & Hong, S.H. Comparative analysis of envelope proteomes in Escherichia coli B and K-12 strains. J. Microbiol. Biotechnol. 22, 470–478 (2012).

    Article  CAS  PubMed  Google Scholar 

  34. Orelle, C. et al. Tools for characterizing bacterial protein synthesis inhibitors. Antimicrob. Agents Chemother. 57, 5994–6004 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ban, N., Nissen, P., Hansen, J., Moore, P.B. & Steitz, T.A. The complete atomic structure of the large ribosomal subunit at 2.4 Å resolution. Science 289, 905–920 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Polikanov, Y.S., Melnikov, S.V., Söll, D. & Steitz, T.A. Structural insights into the role of rRNA modifications in protein synthesis and ribosome assembly. Nat. Struct. Mol. Biol. 22, 342–344 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Garza-Ramos, G., Xiong, L., Zhong, P. & Mankin, A. Binding site of macrolide antibiotics on the ribosome: new resistance mutation identifies a specific interaction of ketolides with rRNA. J. Bacteriol. 183, 6898–6907 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hartz, D., McPheeters, D.S., Traut, R. & Gold, L. Extension inhibition analysis of translation initiation complexes. Methods Enzymol. 164, 419–425 (1988).

    Article  CAS  PubMed  Google Scholar 

  39. Kannan, K., Vázquez-Laslop, N. & Mankin, A.S. Selective protein synthesis by ribosomes with a drug-obstructed exit tunnel. Cell 151, 508–520 (2012).

    Article  CAS  PubMed  Google Scholar 

  40. Kannan, K. et al. The general mode of translation inhibition by macrolide antibiotics. Proc. Natl. Acad. Sci. USA 111, 15958–15963 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Davis, A.R., Gohara, D.W. & Yap, M.N. Sequence selectivity of macrolide-induced translational attenuation. Proc. Natl. Acad. Sci. USA 111, 15379–15384 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Noeske, J. et al. Synergy of streptogramin antibiotics occurs independently of their effects on translation. Antimicrob. Agents Chemother. 58, 5269–5279 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Roy, R.N., Lomakin, I.B., Gagnon, M.G. & Steitz, T.A. The mechanism of inhibition of protein synthesis by the proline-rich peptide oncocin. Nat. Struct. Mol. Biol. 22, 466–469 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gagnon, M.G. et al. Structures of proline-rich peptides bound to the ribosome reveal a common mechanism of protein synthesis inhibition. Nucleic Acids Res. 44, 2439–2450 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Seefeldt, A.C. et al. The proline-rich antimicrobial peptide Onc112 inhibits translation by blocking and destabilizing the initiation complex. Nat. Struct. Mol. Biol. 22, 470–475 (2015).

    Article  CAS  PubMed  Google Scholar 

  46. Bulkley, D., Innis, C.A., Blaha, G. & Steitz, T.A. Revisiting the structures of several antibiotics bound to the bacterial ribosome. Proc. Natl. Acad. Sci. USA 107, 17158–17163 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wiegand, I., Hilpert, K. & Hancock, R.E. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat. Protoc. 3, 163–175 (2008).

    Article  CAS  PubMed  Google Scholar 

  48. Douthwaite, S., Powers, T., Lee, J.Y. & Noller, H.F. Defining the structural requirements for a helix in 23S ribosomal RNA that confers erythromycin resistance. J. Mol. Biol. 209, 655–665 (1989).

    Article  CAS  PubMed  Google Scholar 

  49. Zaporojets, D., French, S. & Squires, C.L. Products transcribed from rearranged rrn genes of Escherichia coli can assemble to form functional ribosomes. J. Bacteriol. 185, 6921–6927 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Moazed, D. & Noller, H.F. Interaction of tRNA with 23S rRNA in the ribosomal A, P, and E sites. Cell 57, 585–597 (1989).

    Article  CAS  PubMed  Google Scholar 

  51. Moazed, D. & Noller, H.F. Intermediate states in the movement of transfer RNA in the ribosome. Nature 342, 142–148 (1989).

    Article  CAS  PubMed  Google Scholar 

  52. Orelle, C. et al. Identifying the targets of aminoacyl-tRNA synthetase inhibitors by primer extension inhibition. Nucleic Acids Res. 41, e144 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. McCoy, A.J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  PubMed  CAS  Google Scholar 

  55. Adams, P.D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank A. Mankin and T. Florin (University of Illinois at Chicago, Chicago, Illinois, USA) for providing pAM552 plasmids carrying various mutations, as well as for careful reading of the manuscript and valuable suggestions. We are thankful to the members of the K. Severinov, P.V.S., and Y.S.P. laboratories for discussions and critical feedback. We thank R. Roy for critical reading of the manuscript. We also thank I. Kamyshko (MilliporeSigma, Billerica, Massachusetts, USA) for material source consulting and for providing the Supelco C5 HPLC column used for tRNA purification. We thank staff at NE-CAT beamline 24ID-C for help with data collection and freezing of the crystals, especially K. Rajashankar, M. Capel, F. Murphy, I. Kourinov, A. Lynch, S. Banerjee, D. Neau, J. Schuermann, N. Sukumar, J. Withrow, K. Perry, and C. Salbego.

This work is based upon research conducted at the Northeastern Collaborative Access Team beamlines, which are funded by the National Institute of General Medical Sciences, US National Institutes of Health (P41 GM103403). The Pilatus 6M detector on the 24ID-C beamline is funded by an NIH–ORIP HEI grant (S10 RR029205). This research used resources of the Advanced Photon Source, a US Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under contract no. DE-AC02-06CH11357.

This work was supported by Illinois State startup funds (to Y.S.P.), the US National Institutes of Health (grant R01 AI117210 to K. Severinov), Skoltech Institutional funds (to K. Severinov), the Russian Foundation for Basic Research (grants 16-04-01100 (to P.V.S.) and 15-34-20139 (to I.A.O.)), the Ministry of Education and Science of the Russian Federation (grant 14.B25.31.0004 to K. Severinov), the Russian Science Foundation (grant 15-15-10017 to M.M. (used for the expression, purification, structure determination, and in vivo activity testing of KLB); grant 14-14-00072 to P.V.S. (used for the toe-printing assays, in vitro activity tests and chemical foot-printing)), the Dynasty Foundation (fellowship to M.M.) and FASIE (grant 9186GU/2015 to D.Y.T.).

Author information

Authors and Affiliations

Authors

Contributions

M.M. and I.U. assembled constructs for the isolation of KLB and derivatives; M.M., I.U., D.G., and D.Y.T. isolated and purified KLB and its derivatives; M.M., D.G., and I.A.O. evaluated bioactivity; D.G. and D.Y.T. selected resistant mutants; A.L.K., N.F.K., and Y.S.P. designed and performed X-ray crystallography experiments; I.A.O., E.S.K., P.V.S., and A.L.K. designed biochemistry and genetic experiments; A.Y. and K. Shabalin performed and analyzed the NMR experiments; and M.M. performed and analyzed the MS experiments, with critical input from M.K., T.A., and M.S. All authors interpreted the results. M.M., Y.S.P., P.V.S., and K. Severinov wrote the manuscript.

Corresponding authors

Correspondence to Konstantin Severinov or Yury S Polikanov.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Tables 1–4 and Supplementary Figures 1–11 (PDF 5523 kb)

Life Sciences Reporting Summary (PDF 129 kb)

Supplementary Data Set 1

Raw data for the luciferase luminescence assay shown in Figure 2b. (XLSX 15 kb)

The KLB functional site in the 70S ribosome. (MOV 28840 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Metelev, M., Osterman, I., Ghilarov, D. et al. Klebsazolicin inhibits 70S ribosome by obstructing the peptide exit tunnel. Nat Chem Biol 13, 1129–1136 (2017). https://doi.org/10.1038/nchembio.2462

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2462

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research