Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Genome-wide genetic screening with chemically mutagenized haploid embryonic stem cells

Abstract

In model organisms, classical genetic screening via random mutagenesis provides key insights into the molecular bases of genetic interactions, helping to define synthetic lethality, synthetic viability and drug-resistance mechanisms. The limited genetic tractability of diploid mammalian cells, however, precludes this approach. Here, we demonstrate the feasibility of classical genetic screening in mammalian systems by using haploid cells, chemical mutagenesis and next-generation sequencing, providing a new tool to explore mammalian genetic interactions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Generation of mutagenized libraries.
Figure 2: Identification of suppressor mutations.

Similar content being viewed by others

Accession codes

Primary accessions

European Nucleotide Archive

References

  1. Forsburg, S.L. Nat. Rev. Genet. 2, 659–668 (2001).

    Article  CAS  Google Scholar 

  2. St Johnston, D. Nat. Rev. Genet. 3, 176–188 (2002).

    Article  CAS  Google Scholar 

  3. Boutros, M. & Ahringer, J. Nat. Rev. Genet. 9, 554–566 (2008).

    Article  CAS  Google Scholar 

  4. Carette, J.E. et al. Science 326, 1231–1235 (2009).

    Article  CAS  Google Scholar 

  5. Koike-Yusa, H., Li, Y., Tan, E.-P., Velasco-Herrera, Mdel.C. & Yusa, K. Nat. Biotechnol. 32, 267–273 (2014).

    Article  CAS  Google Scholar 

  6. Shalem, O. et al. Science 343, 84–87 (2014).

    Article  CAS  Google Scholar 

  7. Rolef Ben-Shahar, T. et al. Science 321, 563–566 (2008).

    Article  Google Scholar 

  8. Leeb, M. & Wutz, A. Nature 479, 131–134 (2011).

    Article  CAS  Google Scholar 

  9. Munroe, R. & Schimenti, J. Methods Mol. Biol. 530, 131–138 (2009).

    Article  CAS  Google Scholar 

  10. Lepage, G.A. & Jones, M. Cancer Res. 21, 642–649 (1961).

    CAS  PubMed  Google Scholar 

  11. Swann, P.F. et al. Science 273, 1109–1111 (1996).

    Article  CAS  Google Scholar 

  12. Guo, G., Wang, W. & Bradley, A. Nature 429, 891–895 (2004).

    Article  CAS  Google Scholar 

  13. Elling, U. et al. Cell Stem Cell 9, 563–574 (2011).

    Article  CAS  Google Scholar 

  14. Jinnah, H.A., De Gregorio, L., Harris, J.C., Nyhan, W.L. & O'Neill, J.P. Mutat. Res. 463, 309–326 (2000).

    Article  CAS  Google Scholar 

  15. Jiricny, J. Cold Spring Harb. Perspect. Biol. 5, a012633 (2013).

    Article  Google Scholar 

  16. Loughery, J.E.P. et al. Hum. Mol. Genet. 20, 3241–3255 (2011).

    Article  CAS  Google Scholar 

  17. Kasap, C., Elemento, O. & Kapoor, T.M. Nat. Chem. Biol. 10, 626–628 (2014).

    Article  CAS  Google Scholar 

  18. Smurnyy, Y. et al. Nat. Chem. Biol. 10, 623–625 (2014).

    Article  CAS  Google Scholar 

  19. Blomen, V.A. et al. Science 350, 1092–1096 (2015).

    Article  CAS  Google Scholar 

  20. Sagi, I. et al. Nature 532, 107–111 (2016).

    Article  CAS  Google Scholar 

  21. Li, H. et al. Bioinformatics 25, 2078–2079 (2009).

    Article  Google Scholar 

  22. Li, H. & Durbin, R. Bioinformatics 25, 1754–1760 (2009).

    Article  CAS  Google Scholar 

  23. McLaren, W. et al. Bioinformatics 26, 2069–2070 (2010).

    Article  CAS  Google Scholar 

  24. Danecek, P. et al. Bioinformatics 27, 2156–2158 (2011).

    Article  CAS  Google Scholar 

  25. Keane, T.M. et al. Nature 477, 289–294 (2011).

    Article  CAS  Google Scholar 

  26. Narzisi, G. et al. Nat. Methods 11, 1033–1036 (2014).

    Article  CAS  Google Scholar 

  27. Hong, Z. et al. J. Cell Sci. 121, 3146–3154 (2008).

    Article  CAS  Google Scholar 

  28. Murakami, K. et al. Nature 529, 403–407 (2016).

    Article  CAS  Google Scholar 

  29. Yusa, K., Zhou, L., Li, M.A., Bradley, A. & Craig, N.L. Proc. Natl. Acad. Sci. USA 108, 1531–1536 (2011).

    Article  CAS  Google Scholar 

  30. Choi, Y. & Chan, A.P. Bioinformatics 31, 2745–2747 (2015).

    Article  CAS  Google Scholar 

  31. Kumar, P., Henikoff, S. & Ng, P.C. Nat. Protoc. 4, 1073–1081 (2009).

    Article  CAS  Google Scholar 

  32. Chiang, T.-W.W., le Sage, C., Larrieu, D., Demir, M. & Jackson, S.P. Sci. Rep. 6, 24356 (2016).

    Article  CAS  Google Scholar 

  33. Wilkening, S. et al. Nucleic Acids Res. 41, e65 (2013).

    Article  CAS  Google Scholar 

  34. Fimereli, D., Detours, V. & Konopka, T. Nucleic Acids Res. 41, e86 (2013).

    Article  CAS  Google Scholar 

  35. Wu, T.D. & Nacu, S. Bioinformatics 26, 873–881 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank all S.P.J. laboratory members for discussions, especially A. Blackford, F. Puddu, C. Schmidt and P. Marco-Casanova for critical reading of the manuscript, and C. Le Sage and T.-W. Chiang for advice with CRISPR–Cas9 gene editing. We thank M. Leeb for H129-3 cells and advice on haploid ES cell culture conditions, and J. Hackett (Gurdon Institute, University of Cambridge) for advice in generating stable ES cell lines. We thank C.D. Robles-Espinoza for helping to design the array of baits for the exon-capture experiment, and J. Hewinson for technical support. Research in the S.P.J. laboratory is funded by Cancer Research UK (CRUK; programme grant C6/A11224), the European Research Council and the European Community Seventh Framework Programme (grant agreement no. HEALTH-F2-2010-259893; DDResponse). Core funding is provided by Cancer Research UK (C6946/A14492) and the Wellcome Trust (WT092096). S.P.J. receives salary from the University of Cambridge, supplemented by CRUK. J.V.F. was funded by Cancer Research UK programme grant C6/A11224 and the Ataxia Telangiectasia Society. J.C. was funded by Cancer Research UK programme grant C6/A11224. D.J.A. is supported by CRUK. Research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013) and ERC grant agreement no. (311166). B.V.G. is supported by a Boehringer Ingelheim Fonds PhD fellowship.

Author information

Authors and Affiliations

Authors

Contributions

J.V.F. and S.P.J. designed the project. J.V.F. mutagenized haploid cells, performed 6-TG selection and isolated suppressor clones. J.V.F. and J.C. expanded suppressor clones, isolated gDNA and prepared samples for sequencing. M.H. analyzed DNA sequencing data, supervised by T.M.K. and D.J.A. J.V.F. and J.C. produced stable cell lines and CRISPR–Cas9 knock-ins. J.V.F. and J.C. isolated RNA from suppressor clones and prepared samples for sequencing. B.V.G. produced RNA sequencing libraries and T.K. analyzed RNA sequencing data, supervised by S.M.N. J.V.F. and S.P.J. wrote the manuscript, with input from all authors.

Corresponding authors

Correspondence to Josep V Forment or Stephen P Jackson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Figures 1–7 (PDF 3132 kb)

Supplementary Data Set 1

Homozygous mutations identified through whole-exome sequencing of 7 suppressor clones. (XLSX 69 kb)

Supplementary Data Set 2

Homozygous mutations identified on the targeted exon-capture experiment performed on 189 suppressor clones. Heterozygous mutations affecting Dnmt1, Hprt, Mlh1, Msh2, Msh6 and Pms2 are also shown. (XLSX 104 kb)

Supplementary Data Set 3

Homozygous mutations identified through whole-exome sequencing of 66 suppressor clones (23 orphan clones plus 43 clones with identified mutations). Heterozygous mutations affecting Dnmt1, Hprt, Mlh1, Msh2, Msh6 and Pms2 are also shown. (XLSX 283 kb)

Supplementary Data Set 4

RNA sequencing data from 5 wild-type samples, 5 identified suppressor clones and 21 unidentified suppressor clones. Values represent fragments per kilobase per million reads. (XLSX 6230 kb)

Supplementary Data Set 5

DNA sequencing coverage for the whole-exome and targeted exon-capture experiments. (XLSX 83 kb)

Supplementary Data Set 6

R scripts for RNA sequencing analysis. (ZIP 3 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Forment, J., Herzog, M., Coates, J. et al. Genome-wide genetic screening with chemically mutagenized haploid embryonic stem cells. Nat Chem Biol 13, 12–14 (2017). https://doi.org/10.1038/nchembio.2226

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2226

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing