Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Membrane anchoring stabilizes and favors secretion of New Delhi metallo-β-lactamase

Abstract

Carbapenems, 'last-resort' β-lactam antibiotics, are inactivated by zinc-dependent metallo-β-lactamases (MBLs). The host innate immune response withholds nutrient metal ions from microbial pathogens by releasing metal-chelating proteins such as calprotectin. We show that metal sequestration is detrimental for the accumulation of MBLs in the bacterial periplasm, because those enzymes are readily degraded in their nonmetallated form. However, the New Delhi metallo-β-lactamase (NDM-1) can persist under conditions of metal depletion. NDM-1 is a lipidated protein that anchors to the outer membrane of Gram-negative bacteria. Membrane anchoring contributes to the unusual stability of NDM-1 and favors secretion of this enzyme in outer-membrane vesicles (OMVs). OMVs containing NDM-1 can protect nearby populations of bacteria from otherwise lethal antibiotic levels, and OMVs from clinical pathogens expressing NDM-1 can carry this MBL and the blaNDM gene. We show that protein export into OMVs can be targeted, providing possibilities of new antibacterial therapeutic strategies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Zn(II) deprivation reduces bacterial antibiotic resistance and causes degradation of MBLs in the Escherichia coli periplasm.
Figure 2: The cellular localization of MBLs is determined by their N-terminal region.
Figure 3: Membrane anchoring protects NDM-1 from degradation upon Zn(II) deprivation.
Figure 4: Membrane-anchoring favors secretion of NDM-1 into OMVs.
Figure 5: NDM-1-carrying OMVs provide carbapenem resistance to susceptible bacteria.
Figure 6: Membrane anchoring assures long-term survival of NDM-1.

Similar content being viewed by others

References

  1. Hede, K. Antibiotic resistance: an infectious arms race. Nature 509, S2–S3 (2014).

    Article  PubMed  CAS  Google Scholar 

  2. Centers for Disease Control and Prevention. Antibiotic Resistance Threats in the United States 2013 (CDC, Atlanta, Georgia, USA, 2013).

  3. Patel, G. & Bonomo, R.A. “Stormy waters ahead”: global emergence of carbapenemases. Front. Microbiol. 4, 48 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Crowder, M.W., Spencer, J. & Vila, A.J. Metallo-β-lactamases: novel weaponry for antibiotic resistance in bacteria. Acc. Chem. Res. 39, 721–728 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Walsh, T.R., Toleman, M.A., Poirel, L. & Nordmann, P. Metallo-β-lactamases: the quiet before the storm? Clin. Microbiol. Rev. 18, 306–325 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Dortet, L., Poirel, L. & Nordmann, P. Worldwide dissemination of the NDM-type carbapenemases in Gram-negative bacteria. BioMed Res. Int. 2014, 249856 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Walsh, T.R., Weeks, J., Livermore, D.M. & Toleman, M.A. Dissemination of NDM-1 positive bacteria in the New Delhi environment and its implications for human health: an environmental point prevalence study. Lancet Infect. Dis. 11, 355–362 (2011).

    Article  PubMed  Google Scholar 

  8. Zhang, C. et al. Higher isolation of NDM-1 producing Acinetobacter baumannii from the sewage of the hospitals in Beijing. PLoS One 8, e64857 (2014).

    Article  PubMed  CAS  Google Scholar 

  9. Luo, Y. et al. Proliferation of nultidrug-resistant New Delhi metallo-β-lactamase genes in municipal wastewater treatment plants in northern China. Environ. Sci. Technol. Lett. 1, 26–30 (2014).

    Article  CAS  Google Scholar 

  10. Poirel, L., Dortet, L., Bernabeu, S. & Nordmann, P. Genetic features of blaNDM-1-positive Enterobacteriaceae. Antimicrob. Agents Chemother. 55, 5403–5407 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. González, J.M. et al. Metallo-β-lactamases withstand low Zn(II) conditions by tuning metal-ligand interactions. Nat. Chem. Biol. 8, 698–700 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Morán-Barrio, J., Limansky, A.S. & Viale, A.M. Secretion of GOB metallo-β-lactamase in Escherichia coli depends strictly on the cooperation between the cytoplasmic DnaK chaperone system and the Sec machinery: completion of folding and Zn(II) ion acquisition occur in the bacterial periplasm. Antimicrob. Agents Chemother. 53, 2908–2917 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Cerasi, M., Ammendola, S. & Battistoni, A. Competition for zinc binding in the host-pathogen interaction. Front. Cell. Infect. Microbiol. 3, 108 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Hood, M.I. & Skaar, E.P. Nutritional immunity: transition metals at the pathogen-host interface. Nat. Rev. Microbiol. 10, 525–537 (2012).

    Article  CAS  PubMed  Google Scholar 

  15. Brophy, M.B., Hayden, J.A. & Nolan, E.M. Calcium ion gradients modulate the zinc affinity and antibacterial activity of human calprotectin. J. Am. Chem. Soc. 134, 18089–18100 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Corbin, B.D. et al. Metal chelation and inhibition of bacterial growth in tissue abscesses. Science 319, 962–965 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Meini, M.R., Tomatis, P.E., Weinreich, D.M. & Vila, A.J. Quantitative description of a protein fitness landscape based on molecular features. Mol. Biol. Evol. 32, 1774–1787 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Schwechheimer, C. & Kuehn, M.J. Outer-membrane vesicles from Gram-negative bacteria: biogenesis and functions. Nat. Rev. Microbiol. 13, 605–619 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. González, L.J., Moreno, D.M., Bonomo, R.A. & Vila, A.J. Host-specific enzyme-substrate interactions in SPM-1 metallo-β-lactamase are modulated by second sphere residues. PLoS Pathog. 10, e1003817 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. King, D. & Strynadka, N. Crystal structure of New Delhi metallo-β-lactamase reveals molecular basis for antibiotic resistance. Protein Sci. 20, 1484–1491 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kovacs-Simon, A., Titball, R.W. & Michell, S.L. Lipoproteins of bacterial pathogens. Infect. Immun. 79, 548–561 (2011).

    Article  CAS  PubMed  Google Scholar 

  22. Rokney, A. et al. E. coli transports aggregated proteins to the poles by a specific and energy-dependent process. J. Mol. Biol. 392, 589–601 (2009).

    Article  CAS  PubMed  Google Scholar 

  23. Hussain, M., Ichihara, S. & Mizushima, S. Accumulation of glyceride-containing precursor of the outer membrane lipoprotein in the cytoplasmic membrane of Escherichia coli treated with globomycin. J. Biol. Chem. 255, 3707–3712 (1980).

    CAS  PubMed  Google Scholar 

  24. Randall, L.B., Dobos, K., Papp-Wallace, K.M., Bonomo, R.A. & Schweizer, H.P. Membrane-bound PenA β-lactamase of Burkholderia pseudomallei. Antimicrob. Agents Chemother. 60, 1509–1514 (2015).

    Article  PubMed  CAS  Google Scholar 

  25. Bootsma, H.J., van Dijk, H., Verhoef, J., Fleer, A. & Mooi, F.R. Molecular characterization of the BRO β-lactamase of Moraxella (Branhamella) catarrhalis. Antimicrob. Agents Chemother. 40, 966–972 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Schaar, V., Nordström, T., Mörgelin, M. & Riesbeck, K. Moraxella catarrhalis outer membrane vesicles carry β-lactamase and promote survival of Streptococcus pneumoniae and Haemophilus influenzae by inactivating amoxicillin. Antimicrob. Agents Chemother. 55, 3845–3853 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bomberger, J.M. et al. Long-distance delivery of bacterial virulence factors by Pseudomonas aeruginosa outer membrane vesicles. PLoS Pathog. 5, e1000382 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Devos, S. et al. The effect of imipenem and diffusible signaling factors on the secretion of outer membrane vesicles and associated Ax21 proteins in Stenotrophomonas maltophilia. Front. Microbiol. 6, 298 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Schaar, V., Uddbäck, I., Nordström, T. & Riesbeck, K. Group A streptococci are protected from amoxicillin-mediated killing by vesicles containing β-lactamase derived from Haemophilus influenzae. J. Antimicrob. Chemother. 69, 117–120 (2014).

    Article  CAS  PubMed  Google Scholar 

  30. Rumbo, C. et al. Horizontal transfer of the OXA-24 carbapenemase gene via outer membrane vesicles: a new mechanism of dissemination of carbapenem resistance genes in Acinetobacter baumannii. Antimicrob. Agents Chemother. 55, 3084–3090 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tottey, S. et al. Protein-folding location can regulate manganese-binding versus copper- or zinc-binding. Nature 455, 1138–1142 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. Hu, Z., Gunasekera, T.S., Spadafora, L., Bennett, B. & Crowder, M.W. Metal content of metallo-β-lactamase L1 is determined by the bioavailability of metal ions. Biochemistry 47, 7947–7953 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. Kim, Y. et al. Structure of apo- and monometalated forms of NDM-1--a highly potent carbapenem-hydrolyzing metallo-β-lactamase. PLoS One 6, e24621 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. González, J.M., Buschiazzo, A. & Vila, A.J. Evidence of adaptability in metal coordination geometry and active-site loop conformation among B1 metallo-β-lactamases. Biochemistry 49, 7930–7938 (2010).

    Article  PubMed  CAS  Google Scholar 

  35. Borra, P.S. et al. Crystal structures of Pseudomonas aeruginosa GIM-1: active-site plasticity in metallo-β-lactamases. Antimicrob. Agents Chemother. 57, 848–854 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hernandez Valladares, M. et al. Zn(II) dependence of the Aeromonas hydrophila AE036 metallo-β-lactamase activity and stability. Biochemistry 36, 11534–11541 (1997).

    Article  CAS  PubMed  Google Scholar 

  37. Selevsek, N. et al. Zinc ion-induced domain organization in metallo-β-lactamases: a flexible “zinc arm” for rapid metal ion transfer? J. Biol. Chem. 284, 16419–16431 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Periyannan, G., Shaw, P.J., Sigdel, T. & Crowder, M.W. In vivo folding of recombinant metallo-β-lactamase L1 requires the presence of Zn(II). Protein Sci. 13, 2236–2243 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wommer, S. et al. Substrate-activated zinc binding of metallo-β-lactamases: physiological importance of mononuclear enzymes. J. Biol. Chem. 277, 24142–24147 (2002).

    Article  CAS  PubMed  Google Scholar 

  40. Johne, B. et al. Functional and clinical aspects of the myelomonocyte protein calprotectin. Mol. Pathol. 50, 113–123 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Haley, K.P. et al. The human antimicrobial protein calgranulin C participates in control of Helicobacter pylori growth and regulation of virulence. Infect. Immun. 83, 2944–2956 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gläser, R. et al. Antimicrobial psoriasin (S100A7) protects human skin from Escherichia coli infection. Nat. Immunol. 6, 57–64 (2005).

    Article  PubMed  CAS  Google Scholar 

  43. Pederick, V.G. et al. ZnuA and zinc homeostasis in Pseudomonas aeruginosa. Sci. Rep. 5, 13139 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kesty, N.C. & Kuehn, M.J. Incorporation of heterologous outer membrane and periplasmic proteins into Escherichia coli outer membrane vesicles. J. Biol. Chem. 279, 2069–2076 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. Haurat, M.F. et al. Selective sorting of cargo proteins into bacterial membrane vesicles. J. Biol. Chem. 286, 1269–1276 (2011).

    Article  CAS  PubMed  Google Scholar 

  46. Veith, P.D. et al. Porphyromonas gingivalis outer membrane vesicles exclusively contain outer membrane and periplasmic proteins and carry a cargo enriched with virulence factors. J. Proteome Res. 13, 2420–2432 (2014).

    Article  CAS  PubMed  Google Scholar 

  47. Santos, S. et al. Outer membrane vesicles (OMV) production of Neisseria meningitidis serogroup B in batch process. Vaccine 30, 6064–6069 (2012).

    Article  CAS  PubMed  Google Scholar 

  48. Irazoqui, J.E. et al. Distinct pathogenesis and host responses during infection of C. elegans by P. aeruginosa and S. aureus. PLoS Pathog. 6, e1000982 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Kitagawa, R. et al. Biogenesis of Salmonella enterica serovar typhimurium membrane vesicles provoked by induction of PagC. J. Bacteriol. 192, 5645–5656 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Murphy, T.A., Simm, A.M., Toleman, M.A., Jones, R.N. & Walsh, T.R. Biochemical characterization of the acquired metallo-β-lactamase SPM-1 from Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 47, 582–587 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Fiorilli, G. et al. Emergence of metallo-β-lactamases in Acinetobacter spp clinical isolates from Argentina. Rev. Esp. Quimioter. 23, 100–102 (2010).

    CAS  PubMed  Google Scholar 

  52. Marchiaro, P. et al. Biochemical characterization of metallo-β-lactamase VIM-11 from a Pseudomonas aeruginosa clinical strain. Antimicrob. Agents Chemother. 52, 2250–2252 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ravasi, P., Peiru, S., Gramajo, H. & Menzella, H.G. Design and testing of a synthetic biology framework for genetic engineering of Corynebacterium glutamicum. Microb. Cell Fact. 11, 147 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kovach, M.E. et al. Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 166, 175–176 (1995).

    Article  CAS  PubMed  Google Scholar 

  55. Choi, K.H., Kumar, A. & Schweizer, H.P. A 10-min method for preparation of highly electrocompetent Pseudomonas aeruginosa cells: application for DNA fragment transfer between chromosomes and plasmid transformation. J. Microbiol. Methods 64, 391–397 (2006).

    Article  CAS  PubMed  Google Scholar 

  56. Schneider, C.A., Rasband, W.S. & Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Chen, X., Brown, T. & Tai, P.C. Identification and characterization of protease-resistant SecA fragments: AecA has two membrane-integral forms. J. Bacteriol. 180, 527–537 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Aschtgen, M.S., Bernard, C.S., De Bentzmann, S., Lloubès, R. & Cascales, E. SciN is an outer membrane lipoprotein required for type VI secretion in enteroaggregative Escherichia coli. J. Bacteriol. 190, 7523–7531 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. CLSI. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Approved Standard - Ninth Edition. CLSI Document M07-A9 (Clinical Laboratory Standards Institute, Wayne, Pennsylvania, USA, 2012).

  60. Park, M. et al. Isolation and characterization of the outer membrane of Escherichia coli with autodisplayed Z-domains. Biochim. Biophys. Acta 1848, 842–847 (2015).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. Spencer (University of Bristol), H. Menzella (University of Rosario) and R. Rasia (IBR, CONICET-UNR) for providing plasmids pET26-blaNDM-1, pTGR11 and pET28-TEV, respectively, A. Corso (Administración Nacional de Laboratorios e Instituos de Salud) for providing clinical strains, and A. Viale (IBR) for GroEL antibodies. This research was supported by grants from the US National Institutes of Health (NIH; R01AI100560) to A.J.V. and R.A.B., and Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT) to A.J.V. R.A.B. acknowledges support from NIH under award numbers R01AI072219, R01AI063517 and R01AI100560, and funds and/or facilities provided by the Louis Stokes Cleveland Department of Veterans Affairs Medical Center and the VISN 10 Geriatric Research, Education and Clinical Care Center (VISN 10) of the Department of Veterans Affairs. E.M.N. thanks support from the Kinship Foundation (Searle Scholars Program) and MIT Department of Chemistry.

Author information

Authors and Affiliations

Authors

Contributions

L.J.G. and G.B. performed the microbiological, molecular biology and biochemical experiments. T.G.N. purified calprotectin. L.J.G., G.B., T.G.N., E.M.N., R.A.B. and A.J.V. analyzed and discussed data. L.J.G., G.B., R.A.B. and A.J.V. wrote the paper, and all authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Alejandro J Vila.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Figures 1–13 and Supplementary Tables 1–5. (PDF 2202 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

González, L., Bahr, G., Nakashige, T. et al. Membrane anchoring stabilizes and favors secretion of New Delhi metallo-β-lactamase. Nat Chem Biol 12, 516–522 (2016). https://doi.org/10.1038/nchembio.2083

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2083

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology