Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

A synthetic biochemistry module for production of bio-based chemicals from glucose

Abstract

Synthetic biochemistry, the cell-free production of biologically based chemicals, is a potentially high-yield, flexible alternative to in vivo metabolic engineering. To limit costs, cell-free systems must be designed to operate continuously with minimal addition of feedstock chemicals. We describe a robust, efficient synthetic glucose breakdown pathway and implement it for the production of bioplastic. The system's performance suggests that synthetic biochemistry has the potential to become a viable industrial alternative.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The synthetic PBG pathway for the conversion of glucose to polyhydroxybutyrate.
Figure 2: Semicontinuous production of PHB.

Similar content being viewed by others

Accession codes

Accessions

NCBI Reference Sequence

References

  1. Zhang, Y.-H.P. ACS Catal. 1, 998–1009 (2011).

    Article  CAS  Google Scholar 

  2. Yu, X., Liu, T., Zhu, F. & Khosla, C. Proc. Natl. Acad. Sci. USA 108, 18643–18648 (2011).

    Article  CAS  Google Scholar 

  3. Schultheisz, H.L., Szymczyna, B.R., Scott, L.G. & Williamson, J.R. J. Am. Chem. Soc. 133, 297–304 (2011).

    Article  CAS  Google Scholar 

  4. Schultheisz, H.L., Szymczyna, B.R., Scott, L.G. & Williamson, J.R. ACS Chem. Biol. 3, 499–511 (2008).

    Article  CAS  Google Scholar 

  5. Rollin, J.A., Tam, T.K. & Zhang, Y.-H.P. Green Chem. 15, 1708–1719 (2013).

    Article  CAS  Google Scholar 

  6. Jewett, M.C. & Swartz, J.R. Biotechnol. Prog. 20, 102–109 (2004).

    Article  CAS  Google Scholar 

  7. Hold, C. & Panke, S. J. R. Soc. Interface 6 (suppl. 4), S507–S521 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Bujara, M., Schümperli, M., Billerbeck, S., Heinemann, M. & Panke, S. Biotechnol. Bioeng. 106, 376–389 (2010).

    CAS  PubMed  Google Scholar 

  9. Zhang, Y.-H.P. Biotechnol. Bioeng. 105, 663–677 (2010).

    CAS  PubMed  Google Scholar 

  10. Verlinden, R.A., Hill, D.J., Kenward, M.A., Williams, C.D. & Radecka, I. J. Appl. Microbiol. 102, 1437–1449 (2007).

    Article  CAS  Google Scholar 

  11. Singh, M., Kumar, P., Ray, S. & Kalia, V.C. Indian J. Microbiol. 55, 235–249 (2015).

    Article  CAS  Google Scholar 

  12. Hankermeyer, C.R. & Tjeerdema, R.S. Rev. Environ. Contam. Toxicol. 159, 1–24 (1999).

    CAS  PubMed  Google Scholar 

  13. Satoh, Y., Tajima, K., Tannai, H. & Munekata, M. J. Biosci. Bioeng. 95, 335–341 (2003).

    Article  CAS  Google Scholar 

  14. Jossek, R. & Steinbüchel, A. FEMS Microbiol. Lett. 168, 319–324 (1998).

    Article  CAS  Google Scholar 

  15. Liu, S.-J. & Steinbüchel, A. Appl. Microbiol. Biotechnol. 53, 545–552 (2000).

    Article  CAS  Google Scholar 

  16. Opgenorth, P.H., Korman, T.P. & Bowie, J.U. Nat. Commun. 5, 4113 (2014).

    Article  CAS  Google Scholar 

  17. Meile, L., Rohr, L.M., Geissmann, T.A., Herensperger, M. & Teuber, M. J. Bacteriol. 183, 2929–2936 (2001).

    Article  CAS  Google Scholar 

  18. Glenn, K. & Smith, K.S. J. Bacteriol. 197, 1157–1163 (2015).

    Article  CAS  Google Scholar 

  19. Zhang, S., Yasuo, T., Lenz, R.W. & Goodwin, S. Biomacromolecules 1, 244–251 (2000).

    Article  CAS  Google Scholar 

  20. Dien, B.S., Cotta, M.A. & Jeffries, T.W. Appl. Microbiol. Biotechnol. 63, 258–266 (2003).

    Article  CAS  Google Scholar 

  21. Gibson, D.G. et al. Science 319, 1215–1220 (2008).

    Article  CAS  Google Scholar 

  22. Kitagawa, M. et al. DNA Res. Int. J. Rapid Publ. Rep. Genes Genomes 12, 291–299 (2005).

    CAS  Google Scholar 

  23. Sheu, D.-S., Chen, W.-M., Lai, Y.-W. & Chang, R.-C. J. Bacteriol. 194, 2620–2629 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by US DOE grant DE-FC02-02ER63421 and ARPA-E grant DE-AR0000556.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the system design, design of experiments and data analysis. P.O. and T.P.K. performed the experiments. All the authors wrote the paper.

Corresponding author

Correspondence to James U Bowie.

Ethics declarations

Competing interests

The authors have formed a company, Invizyne Technologies, that will seek to exploit cell-free technologies.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Figures 1 and 2, Supplementary Tables 1–3 and Supplementary Note. (PDF 438 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Opgenorth, P., Korman, T. & Bowie, J. A synthetic biochemistry module for production of bio-based chemicals from glucose. Nat Chem Biol 12, 393–395 (2016). https://doi.org/10.1038/nchembio.2062

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2062

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research