Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cyclophilin A promotes cell migration via the Abl-Crk signaling pathway

Abstract

Cyclophilin A (CypA) is overexpressed in a number of human cancer types, but the mechanisms by which the protein promotes oncogenic properties of cells are not understood. Here we demonstrate that CypA binds the CrkII adaptor protein and prevents it from switching to the inhibited state. CrkII influences cell motility and invasion by mediating signaling through its SH2 and SH3 domains. CrkII Tyr221 phosphorylation by the Abl or EGFR kinases induces an inhibited state of CrkII by means of an intramolecular SH2-pTyr221 interaction, causing signaling interruption. We show that the CrkII phosphorylation site constitutes a binding site for CypA. Recruitment of CypA sterically restricts the accessibility of Tyr221 to kinases, thereby suppressing CrkII phosphorylation and promoting the active state. Structural, biophysical and in vivo data show that CypA augments CrkII-mediated signaling. A strong stimulation of cell migration is observed in cancer cells wherein both CypA and CrkII are greatly upregulated.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Binding between CypA and CrkII.
Figure 2: Specific interaction between CypA and CrkII in vitro and in vivo.
Figure 3: CypA attenuates CrkII Tyr221 phosphorylation in vitro and in vivo.
Figure 4: CypA attenuates CrkII Tyr221 phosphorylation in MDA-MB-468 cancer cell line.
Figure 5: Effect of the CypA–CrkII complex on cell migration.
Figure 6: Effect of CypA binding to CrkII in integrin signaling.

Similar content being viewed by others

Accession codes

Primary accessions

Biological Magnetic Resonance Data Bank

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Ryffel, B. et al. Distribution of the cyclosporine binding protein cyclophilin in human tissues. Immunology 72, 399–404 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Nigro, P., Pompilio, G. & Capogrossi, M.C. Cyclophilin A: a key player for human disease. Cell Death Dis. 4, e888 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Bonfils, C. et al. Cyclophilin A as negative regulator of apoptosis by sequestering cytochrome c. Biochem. Biophys. Res. Commun. 393, 325–330 (2010).

    CAS  PubMed  Google Scholar 

  4. Bosco, D.A., Eisenmesser, E.Z., Pochapsky, S., Sundquist, W.I. & Kern, D. Catalysis of cis/trans isomerization in native HIV-1 capsid by human cyclophilin A. Proc. Natl. Acad. Sci. USA 99, 5247–5252 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Brazin, K.N., Mallis, R.J., Fulton, D.B. & Andreotti, A.H. Regulation of the tyrosine kinase Itk by the peptidyl-prolyl isomerase cyclophilin A. Proc. Natl. Acad. Sci. USA 99, 1899–1904 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Howard, B.R., Vajdos, F.F., Li, S., Sundquist, W.I. & Hill, C.P. Structural insights into the catalytic mechanism of cyclophilin A. Nat. Struct. Biol. 10, 475–481 (2003).

    CAS  PubMed  Google Scholar 

  7. Göthel, S.F. & Marahiel, M.A. Peptidyl-prolyl cis-trans isomerases, a superfamily of ubiquitous folding catalysts. Cell. Mol. Life Sci. 55, 423–436 (1999).

    PubMed  Google Scholar 

  8. Fischer, G., Tradler, T. & Zarnt, T. The mode of action of peptidyl prolyl cis/trans isomerases in vivo: binding vs. catalysis. FEBS Lett. 426, 17–20 (1998).

    CAS  PubMed  Google Scholar 

  9. Lee, J. & Kim, S.S. An overview of cyclophilins in human cancers. J. Int. Med. Res. 38, 1561–1574 (2010).

    CAS  PubMed  Google Scholar 

  10. Li, Z. et al. Proteomics identification of cyclophilin a as a potential prognostic factor and therapeutic target in endometrial carcinoma. Mol. Cell. Proteomics 7, 1810–1823 (2008).

    CAS  PubMed  Google Scholar 

  11. Howard, B.A. et al. Stable RNA interference-mediated suppression of cyclophilin A diminishes non-small-cell lung tumor growth in vivo. Cancer Res. 65, 8853–8860 (2005).

    CAS  PubMed  Google Scholar 

  12. Obchoei, S. et al. Cyclophilin A enhances cell proliferation and tumor growth of liver fluke–associated cholangiocarcinoma. Mol. Cancer 10, 102 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Stewart, T., Tsai, S.C., Grayson, H., Henderson, R. & Opelz, G. Incidence of de-novo breast cancer in women chronically immunosuppressed after organ transplantation. Lancet 346, 796–798 (1995).

    CAS  PubMed  Google Scholar 

  14. Birge, R.B., Kalodimos, C., Inagaki, F. & Tanaka, S. Crk and CrkL adaptor proteins: networks for physiological and pathological signaling. Cell Commun. Signal. 7, 13 (2009).

    PubMed  PubMed Central  Google Scholar 

  15. Linghu, H. et al. Involvement of adaptor protein Crk in malignant feature of human ovarian cancer cell line MCAS. Oncogene 25, 3547–3556 (2006).

    CAS  PubMed  Google Scholar 

  16. Nishihara, H. et al. Molecular and immunohistochemical analysis of signaling adaptor protein Crk in human cancers. Cancer Lett. 180, 55–61 (2002).

    CAS  PubMed  Google Scholar 

  17. Miller, C.T. et al. Increased C-CRK proto-oncogene expression is associated with an aggressive phenotype in lung adenocarcinomas. Oncogene 22, 7950–7957 (2003).

    PubMed  Google Scholar 

  18. Watanabe, T. et al. Adaptor protein Crk induces Src-dependent activation of p38 MAPK in regulation of synovial sarcoma cell proliferation. Mol. Cancer Res. 7, 1582–1592 (2009).

    CAS  PubMed  Google Scholar 

  19. Takino, T. et al. CrkI adapter protein modulates cell migration and invasion in glioblastoma. Cancer Res. 63, 2335–2337 (2003).

    CAS  PubMed  Google Scholar 

  20. Kumar, S., Fajardo, J.E., Birge, R.B. & Sriram, G. Crk at the quarter century mark: perspectives in signaling and cancer. J. Cell. Biochem. 115, 819–825 (2014).

    CAS  PubMed  Google Scholar 

  21. Fathers, K.E. et al. Crk adaptor proteins act as key signaling integrators for breast tumorigenesis. Breast Cancer Res. 14, R74 (2012).

    PubMed  PubMed Central  Google Scholar 

  22. Shishido, T. et al. Crk family adaptor proteins trans-activate c-Abl kinase. Genes Cells 6, 431–440 (2001).

    CAS  PubMed  Google Scholar 

  23. Sirvent, A., Benistant, C. & Roche, S. Cytoplasmic signalling by the c-Abl tyrosine kinase in normal and cancer cells. Biol. Cell 100, 617–631 (2008).

    CAS  PubMed  Google Scholar 

  24. Petschnigg, J. et al. The mammalian-membrane two-hybrid assay (MaMTH) for probing membrane-protein interactions in human cells. Nat. Methods 11, 585–592 (2014).

    CAS  PubMed  Google Scholar 

  25. Sarkar, P., Reichman, C., Saleh, T., Birge, R.B. & Kalodimos, C.G. Proline cis-trans isomerization controls autoinhibition of a signaling protein. Mol. Cell 25, 413–426 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Sarkar, P., Saleh, T., Tzeng, S.R., Birge, R.B. & Kalodimos, C.G. Structural basis for regulation of the Crk signaling protein by a proline switch. Nat. Chem. Biol. 7, 51–57 (2011).

    CAS  PubMed  Google Scholar 

  27. Kobashigawa, Y. et al. Structural basis for the transforming activity of human cancer-related signaling adaptor protein CRK. Nat. Struct. Mol. Biol. 14, 503–510 (2007).

    CAS  PubMed  Google Scholar 

  28. Schmidpeter, P.A. & Schmid, F.X. Molecular determinants of a regulatory prolyl isomerization in the signal adapter protein c-CrkII. ACS Chem. Biol. 9, 1145–1152 (2014).

    CAS  PubMed  Google Scholar 

  29. Feller, S.M., Knudsen, B. & Hanafusa, H. c-Abl kinase regulates the protein binding activity of c-Crk. EMBO J. 13, 2341–2351 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Hashimoto, Y. et al. Phosphorylation of CrkII adaptor protein at tyrosine 221 by epidermal growth factor receptor. J. Biol. Chem. 273, 17186–17191 (1998).

    CAS  PubMed  Google Scholar 

  31. Rosen, M.K. et al. Direct demonstration of an intramolecular SH2-phosphotyrosine interaction in the Crk protein. Nature 374, 477–479 (1995).

    CAS  PubMed  Google Scholar 

  32. Chodniewicz, D. & Klemke, R.L. Regulation of integrin-mediated cellular responses through assembly of a CAS/Crk scaffold. Biochim. Biophys. Acta 1692, 63–76 (2004).

    CAS  PubMed  Google Scholar 

  33. Piotukh, K. et al. Cyclophilin A binds to linear peptide motifs containing a consensus that is present in many human proteins. J. Biol. Chem. 280, 23668–23674 (2005).

    CAS  PubMed  Google Scholar 

  34. Handschumacher, R.E., Harding, M.W., Rice, J., Drugge, R.J. & Speicher, D.W. Cyclophilin: a specific cytosolic binding protein for cyclosporin A. Science 226, 544–547 (1984).

    CAS  PubMed  Google Scholar 

  35. Ting, A.Y., Kain, K.H., Klemke, R.L. & Tsien, R.Y. Genetically encoded fluorescent reporters of protein tyrosine kinase activities in living cells. Proc. Natl. Acad. Sci. USA 98, 15003–15008 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Filmus, J., Pollak, M.N., Cailleau, R. & Buick, R.N. MDA-468, a human breast cancer cell line with a high number of epidermal growth factor (EGF) receptors, has an amplified EGF receptor gene and is growth inhibited by EGF. Biochem. Biophys. Res. Commun. 128, 898–905 (1985).

    CAS  PubMed  Google Scholar 

  37. Escalante, M. et al. Phosphorylation of c-Crk II on the negative regulatory Tyr222 mediates nerve growth factor–induced cell spreading and morphogenesis. J. Biol. Chem. 275, 24787–24797 (2000).

    CAS  PubMed  Google Scholar 

  38. Yamada, S. et al. Overexpression of CRKII increases migration and invasive potential in oral squamous cell carcinoma. Cancer Lett. 303, 84–91 (2011).

    CAS  PubMed  Google Scholar 

  39. Noren, N.K., Foos, G., Hauser, C.A. & Pasquale, E.B. The EphB4 receptor suppresses breast cancer cell tumorigenicity through an Abl-Crk pathway. Nat. Cell Biol. 8, 815–825 (2006).

    CAS  PubMed  Google Scholar 

  40. Takino, T. et al. Tyrosine phosphorylation of the CrkII adaptor protein modulates cell migration. J. Cell Sci. 116, 3145–3155 (2003).

    CAS  PubMed  Google Scholar 

  41. Diemert, S. et al. Impedance measurement for real time detection of neuronal cell death. J. Neurosci. Methods 203, 69–77 (2012).

    CAS  PubMed  Google Scholar 

  42. Deakin, N.O. & Turner, C.E. Paxillin comes of age. J. Cell Sci. 121, 2435–2444 (2008).

    CAS  PubMed  Google Scholar 

  43. Hu, Y.L. et al. FAK and paxillin dynamics at focal adhesions in the protrusions of migrating cells. Sci. Rep. 4, 6024 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. de Jong, R., ten Hoeve, J., Heisterkamp, N. & Groffen, J. Tyrosine 207 in CRKL is the BCR/ABL phosphorylation site. Oncogene 14, 507–513 (1997).

    CAS  PubMed  Google Scholar 

  45. Hemmeryckx, B. et al. BCR/ABL P190 transgenic mice develop leukemia in the absence of Crkl. Oncogene 21, 3225–3231 (2002).

    CAS  PubMed  Google Scholar 

  46. Jankowski, W. et al. Domain organization differences explain Bcr-Abl's preference for CrkL over CrkII. Nat. Chem. Biol. 8, 590–596 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Bell, E.S. & Park, M. Models of Crk adaptor proteins in cancer. Genes Cancer 3, 341–352 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Bravo-Cordero, J.J., Hodgson, L. & Condeelis, J. Directed cell invasion and migration during metastasis. Curr. Opin. Cell Biol. 24, 277–283 (2012).

    CAS  PubMed  Google Scholar 

  49. Klemke, R.L. et al. CAS/Crk coupling serves as a 'molecular switch' for induction of cell migration. J. Cell Biol. 140, 961–972 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Nath, P.R., Dong, G., Braiman, A. & Isakov, N. Immunophilins control T lymphocyte adhesion and migration by regulating CrkII binding to C3G. J. Immunol. 193, 3966–3977 (2014).

    CAS  PubMed  Google Scholar 

  51. Reichman, C. et al. Transactivation of Abl by the Crk II adapter protein requires a PNAY sequence in the Crk C-terminal SH3 domain. Oncogene 24, 8187–8199 (2005).

    CAS  PubMed  Google Scholar 

  52. Sriram, G. et al. Phosphorylation of Crk on tyrosine 251 in the RT loop of the SH3C domain promotes Abl kinase transactivation. Oncogene 30, 4645–4655 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Delaglio, F. et al. NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J. Biomol. NMR 6, 277–293 (1995).

    CAS  PubMed  Google Scholar 

  54. Güntert, P. Automated NMR structure calculation with CYANA. Methods Mol. Biol. 278, 353–378 (2004).

    PubMed  Google Scholar 

  55. Shen, Y. & Bax, A. Protein backbone and side chain torsion angles predicted from NMR chemical shifts using artificial neural networks. J. Biomol. NMR 56, 227–241 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. de Vries, S.J., van Dijk, M. & Bonvin, A.M. The HADDOCK web server for data-driven biomolecular docking. Nat. Protoc. 5, 883–897 (2010).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank N. Sheth for helping with the cell biological experiments. This work was supported by the US National Institutes of Health (GM80308 to C.G.K. and CA165077 to R.B.B.), the Rutgers University Busch Biomedical Research Grant (to A.J.R.) and the NIH Director's Innovator Award (1DP20D006462-01 to K.-B.L.).

Author information

Authors and Affiliations

Authors

Contributions

T.S. and C.G.K. designed the study; T.S. and W.J. recorded and analyzed the NMR data; W.J. and P.R. determined the structure of the complex; T.S., G.S. and R.B.B. collected and analyzed the kinase phosphorylation and cell migration data; T.S., S.S. and K.-B.L. collected and analyzed the FRET and wound healing data; T.S., L.A.C. and A.J.R. collected and analyzed the fluorescence microscopy data; T.S. and C.G.K. wrote the manuscript.

Corresponding author

Correspondence to Charalampos G Kalodimos.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Figures 1–13 and Supplementary Table 1. (PDF 7430 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saleh, T., Jankowski, W., Sriram, G. et al. Cyclophilin A promotes cell migration via the Abl-Crk signaling pathway. Nat Chem Biol 12, 117–123 (2016). https://doi.org/10.1038/nchembio.1981

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1981

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research