Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Design and characterization of bivalent BET inhibitors

Abstract

Cellular signaling is often propagated by multivalent interactions. Multivalency creates avidity, allowing stable biophysical recognition. Multivalency is an attractive strategy for achieving potent binding to protein targets, as the affinity of bivalent ligands is often greater than the sum of monovalent affinities. The bromodomain and extraterminal domain (BET) family of transcriptional coactivators features tandem bromodomains through which BET proteins bind acetylated histones and transcription factors. All reported antagonists of the BET protein BRD4 bind in a monovalent fashion. Here we describe, to our knowledge for the first time, a bivalent BET bromodomain inhibitor—MT1—which has unprecedented potency. Biophysical and biochemical studies suggest MT1 is an intramolecular bivalent BRD4 binder that is more than 100-fold more potent, in cellular assays, than the corresponding monovalent antagonist, JQ1. MT1 significantly (P < 0.05) delayed leukemia progression in mice, as compared to JQ1. These data qualify a powerful chemical probe for BET bromodomains and a rationale for further development of multidomain inhibitors of epigenetic reader proteins.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Rational design of bivalent BET bromodomain inhibitors.
Figure 2: Heterodimeric bivalent inhibitors and activity optimization.
Figure 3: Biochemical and biophysical properties of bivalent inhibitors.
Figure 4: MT1: an intramolecular bivalent chemical probe of BET bromodomains.
Figure 5: Kinetic and antitumor advantage of dual-BET bromodomain inhibition.
Figure 6: Efficacy of dual-BET bromodomain inhibition in vivo.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Mammen, M., Choi, S.-K. & Whitesides, G.M. Polyvalent interactions in biological systems: implications for design and use of multivalent ligands and inhibitors. Angew. Chem. Int. Ed. Engl. 37, 2754–2794 (1998).

    Article  PubMed  Google Scholar 

  2. Monsigny, M., Mayer, R. & Roche, A.C. Sugar-lectin interactions: sugar clusters, lectin multivalency and avidity. Carbohydr. Lett. 4, 35–52 (2000).

    CAS  PubMed  Google Scholar 

  3. Kiessling, L.L., Gestwicki, J.E. & Strong, L.E. Synthetic multivalent ligands in the exploration of cell-surface interactions. Curr. Opin. Chem. Biol. 4, 696–703 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Bach, A. et al. Design and synthesis of highly potent and plasma-stable dimeric inhibitors of the PSD-95-NMDA receptor interaction. Angew. Chem. Int. Ed. Engl. 48, 9685–9689 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. Illendula, A. et al. Chemical biology. A small-molecule inhibitor of the aberrant transcription factor CBFβ-SMMHC delays leukemia in mice. Science 347, 779–784 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Profit, A.A., Lee, T.R. & Lawrence, D.S. Bivalent inhibitors of protein tyrosine kinases. J. Am. Chem. Soc. 121, 280–283 (1999).

    Article  CAS  Google Scholar 

  7. Sun, H. et al. Design, synthesis, and characterization of a potent, nonpeptide, cell-permeable, bivalent Smac mimetic that concurrently targets both the BIR2 and BIR3 domains in XIAP. J. Am. Chem. Soc. 129, 15279–15294 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bach, A. et al. A high-affinity, dimeric inhibitor of PSD-95 bivalently interacts with PDZ1-2 and protects against ischemic brain damage. Proc. Natl. Acad. Sci. USA 109, 3317–3322 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Filippakopoulos, P. & Knapp, S. Targeting bromodomains: epigenetic readers of lysine acetylation. Nat. Rev. Drug Discov. 13, 337–356 (2014).

    Article  CAS  PubMed  Google Scholar 

  10. Zeng, L. & Zhou, M.M. Bromodomain: an acetyl-lysine binding domain. FEBS Lett. 513, 124–128 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Smith, S.G. & Zhou, M.M. The bromodomain: a new target in emerging epigenetic medicine. ACS Chem. Biol. 11, 598–608 (2016).

    Article  CAS  PubMed  Google Scholar 

  12. Zuber, J. et al. RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukaemia. Nature 478, 524–528 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Delmore, J.E. et al. BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell 146, 904–917 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yang, Z. et al. Recruitment of P-TEFb for stimulation of transcriptional elongation by the bromodomain protein Brd4. Mol. Cell 19, 535–545 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Krueger, B.J., Varzavand, K., Cooper, J.J. & Price, D.H. The mechanism of release of P-TEFb and HEXIM1 from the 7SK snRNP by viral and cellular activators includes a conformational change in 7SK. PLoS One 5, e12335 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Filippakopoulos, P. et al. Selective inhibition of BET bromodomains. Nature 468, 1067–1073 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tanaka, M., Roberts, J.M., Qi, J. & Bradner, J.E. Inhibitors of emerging epigenetic targets for cancer therapy: a patent review (2010–2014). Pharm. Pat. Anal. 4, 261–284 (2015).

    Article  CAS  PubMed  Google Scholar 

  18. Schröder, S. et al. Two-pronged binding with bromodomain-containing protein 4 liberates positive transcription elongation factor b from inactive ribonucleoprotein complexes. J. Biol. Chem. 287, 1090–1099 (2012).

    Article  PubMed  CAS  Google Scholar 

  19. Baud, M.G. et al. Chemical biology. A bump-and-hole approach to engineer controlled selectivity of BET bromodomain chemical probes. Science 346, 638–641 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Picaud, S. et al. RVX-208, an inhibitor of BET transcriptional regulators with selectivity for the second bromodomain. Proc. Natl. Acad. Sci. USA 110, 19754–19759 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhang, G. et al. Down-regulation of NF-κB transcriptional activity in HIV-associated kidney disease by BRD4 inhibition. J. Biol. Chem. 287, 28840–28851 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. McKeown, M.R. et al. Biased multicomponent reactions to develop novel bromodomain inhibitors. J. Med. Chem. 57, 9019–9027 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Roberts, J.M. & Bradner, J.E. A bead-based proximity assay for BRD4 ligand discovery. Curr. Protoc. Chem. Biol. 7, 263–278 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dahlin, J.L. et al. PAINS in the assay: chemical mechanisms of assay interference and promiscuous enzymatic inhibition observed during a sulfhydryl-scavenging HTS. J. Med. Chem. 58, 2091–2113 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Dawson, M.A. et al. Inhibition of BET recruitment to chromatin as an effective treatment for MLL-fusion leukaemia. Nature 478, 529–533 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chaidos, A. et al. Potent antimyeloma activity of the novel bromodomain inhibitors I-BET151 and I-BET762. Blood 123, 697–705 (2014).

    Article  CAS  PubMed  Google Scholar 

  27. Bartholomeeusen, K., Xiang, Y., Fujinaga, K. & Peterlin, B.M. Bromodomain and extra-terminal (BET) bromodomain inhibition activate transcription via transient release of positive transcription elongation factor b (P-TEFb) from 7SK small nuclear ribonucleoprotein. J. Biol. Chem. 287, 36609–36616 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Winter, G.E. et al. Drug development. Phthalimide conjugation as a strategy for in vivo target protein degradation. Science 348, 1376–1381 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lu, J. et al. Hijacking the E3 ubiquitin ligase cereblon to efficiently target BRD4. Chem. Biol. 22, 755–763 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zengerle, M., Chan, K.H. & Ciulli, A. Selective small molecule induced degradation of the BET bromodomain protein BRD4. ACS Chem. Biol. 10, 1770–1777 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Matzuk, M.M. et al. Small-molecule inhibition of BRDT for male contraception. Cell 150, 673–684 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Dutta Roy, R. & Stefan, M.I. Cooperative binding mitigates the high-dose hook effect. Preprint at. bioRxiv http://dx.doi.org/10.1101/021717 (2015).

  33. Martinez Molina, D. et al. Monitoring drug target engagement in cells and tissues using the cellular thermal shift assay. Science 341, 84–87 (2013).

    Article  CAS  PubMed  Google Scholar 

  34. Arrowsmith, C.H. et al. The promise and peril of chemical probes. Nat. Chem. Biol. 11, 536–541 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Schultz, J., Copley, R.R., Doerks, T., Ponting, C.P. & Bork, P. SMART: a web-based tool for the study of genetically mobile domains. Nucleic Acids Res. 28, 231–234 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sanchez, R., Meslamani, J. & Zhou, M.M. The bromodomain: from epigenome reader to druggable target. Biochim. Biophys. Acta 1839, 676–685 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Anonymous. Bromosporine. SGC http://www.thesgc.org/chemical-probes/Bromosporine (accessed 19 June 2016).

  38. French, C.A. et al. Midline carcinoma of children and young adults with NUT rearrangement. J. Clin. Oncol. 22, 4135–4139 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Anders, L. et al. Genome-wide localization of small molecules. Nat. Biotechnol. 32, 92–96 (2014).

    Article  CAS  PubMed  Google Scholar 

  40. Brumatti, G., Sheridan, C. & Martin, S.J. Expression and purification of recombinant annexin V for the detection of membrane alterations on apoptotic cells. Methods 44, 235–240 (2008).

    Article  CAS  PubMed  Google Scholar 

  41. Kabsch, W. Integration, scaling, space-group assignment and post-refinement. Acta Crystallogr. D Biol. Crystallogr. 66, 133–144 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. McCoy, A.J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Smart, O.S. et al. Exploiting structure similarity in refinement: automated NCS and target-structure restraints in BUSTER. Acta Crystallogr. D Biol. Crystallogr. 68, 368–380 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Adams, P.D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  PubMed  CAS  Google Scholar 

  46. Wiseman, T., Williston, S., Brandts, J.F. & Lin, L.N. Rapid measurement of binding constants and heats of binding using a new titration calorimeter. Anal. Biochem. 179, 131–137 (1989).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J.A. Perry for critical reading of the manuscript and discussions. NMC797 cells were a gift from C. French (Brigham and Women's Hospital). Crystallographic work was based on research conducted at the Advanced Photon Source on the Northeastern Collaborative Access Team beamlines. We thank Mitsubishi Tanabe Pharma Corporation for nonresearch support of M.T. This research was supported by the William Lawrence and Blanche Hughes Foundation (J.E.B.), the Leukemia and Lymphoma Society (J.E.B.) and the US National Institutes of Health (CA066996-01A1, J.E.B.).

Author information

Authors and Affiliations

Authors

Contributions

M.T. and J.M.R. designed and led the study under the supervision of J.E.B. M.T. designed bivalent molecules and performed organic chemistry and medicinal chemistry experiments. J.M.R. designed and performed biochemical, cellular, and in vivo experiments. J.P. performed BRD4(1) FP experiments. S.D.-P., H.-S.S. and S.L.D. performed crystallographic studies. H.S.S. performed SEC and ITC experiments. A.S. and T.G.S. performed in vivo studies. M.T., J.M.R. and J.E.B. wrote the manuscript with input from all authors.

Corresponding author

Correspondence to James E Bradner.

Ethics declarations

Competing interests

M.T. is a visiting scientist from Mitsubishi Tanabe Pharma Corporation and is supported by the company for nonresearch funds. J.E.B. is a founder of Tensha Therapeutics, a biotechnology company that develops drug-like derivatives of JQ1 as investigational cancer therapies. Dana-Farber Cancer Institute and M.T., J.M.R. and J.E.B. have filed patent applications (62/259,797, 62/261,703 and 62/338,968) that include MT1 and the analogs described in this manuscript. J.E.B. is an employee of the Novartis Institutes of BioMedical Research (effective 1 January 2016).

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Figures 1–15 and Supplementary Tables 1–2. (PDF 3059 kb)

Supplementary Note

Synthetic Procedures. (PDF 950 kb)

Supplementary Data Set 1

Supplementary Figure 2 source data. (XLSX 14 kb)

Supplementary Data Set 2

Supplementary Figure 4 source data. (XLSX 13 kb)

Supplementary Data Set 3

Supplementary Figure 6 source data. (XLSX 12 kb)

Supplementary Data Set 4

Supplementary Figure 7 source data. (XLSX 12 kb)

Supplementary Data Set 5

Supplementary Figure 8 source data. (XLSX 63 kb)

Supplementary Data Set 6

Supplementary Figure 9 source data. (XLSX 22 kb)

Supplementary Data Set 7

Supplementary Figure 13 source data. (XLSX 15 kb)

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tanaka, M., Roberts, J., Seo, HS. et al. Design and characterization of bivalent BET inhibitors. Nat Chem Biol 12, 1089–1096 (2016). https://doi.org/10.1038/nchembio.2209

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2209

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer