Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Competing charge transfer pathways at the photosystem II–electrode interface

Abstract

The integration of the water-oxidation enzyme photosystem II (PSII) into electrodes allows the electrons extracted from water oxidation to be harnessed for enzyme characterization and to drive novel endergonic reactions. However, PSII continues to underperform in integrated photoelectrochemical systems despite extensive optimization efforts. Here we carried out protein-film photoelectrochemistry using spinach and Thermosynechococcus elongatus PSII, and we identified a competing charge transfer pathway at the enzyme–electrode interface that short-circuits the known water-oxidation pathway. This undesirable pathway occurs as a result of photo-induced O2 reduction occurring at the chlorophyll pigments and is promoted by the embedment of PSII in an electron-conducting fullerene matrix, a common strategy for enzyme immobilization. Anaerobicity helps to recover the PSII photoresponse and unmasks the onset potentials relating to the QA/QB charge transfer process. These findings impart a fuller understanding of the charge transfer pathways within PSII and at photosystem–electrode interfaces, which will lead to more rational design of pigment-containing photoelectrodes in general.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Energy/charge transfer pathways.
Figure 2: PSII photocathodic currents stem from protein-bound and isolated Chl a pigments.
Figure 3: O2 and the fullerene derivative C60-DMePyI are electron acceptors for photoexcited Chl a.
Figure 4: Onset potential.
Figure 5: Summary of the photoanodic and photocathodic charge transfer pathways within PSII and at the PSII–electrode interface.

Similar content being viewed by others

References

  1. Suga, M. et al. Native structure of photosystem II at 1.95 Å resolution viewed by femtosecond X-ray pulses. Nature 517, 99–103 (2015).

    CAS  PubMed  Google Scholar 

  2. Nath, K. et al. Towards a critical understanding of the photosystem II repair mechanism and its regulation during stress conditions. FEBS Lett. 587, 3372–3381 (2013).

    CAS  PubMed  Google Scholar 

  3. Kruse, O., Rupprecht, J., Mussgnug, J.H., Dismukes, G.C. & Hankamer, B. Photosynthesis: a blueprint for solar energy capture and biohydrogen production technologies. Photochem. Photobiol. Sci. 4, 957–970 (2005).

    CAS  PubMed  Google Scholar 

  4. Kato, M., Zhang, J.Z., Paul, N. & Reisner, E. Protein film photoelectrochemistry of the water oxidation enzyme photosystem II. Chem. Soc. Rev. 43, 6485–6497 (2014).

    CAS  PubMed  Google Scholar 

  5. Badura, A., Kothe, T., Schuhmann, W. & Rögner, M. Wiring photosynthetic enzymes to electrodes. Energy Environ. Sci. 4, 3263–3274 (2011).

    CAS  Google Scholar 

  6. Mersch, D. et al. Wiring of photosystem II to hydrogenase for photoelectrochemical water splitting. J. Am. Chem. Soc. 137, 8541–8549 (2015).

    CAS  PubMed  Google Scholar 

  7. Kato, M., Cardona, T., Rutherford, A.W. & Reisner, E. Photoelectrochemical water oxidation with photosystem II integrated in a mesoporous indium-tin oxide electrode. J. Am. Chem. Soc. 134, 8332–8335 (2012).

    CAS  PubMed  Google Scholar 

  8. Lai, Y.-H., Kato, M., Mersch, D. & Reisner, E. Comparison of photoelectrochemical water oxidation activity of a synthetic photocatalyst system with photosystem II. Faraday Discuss. 176, 199–211 (2014).

    CAS  PubMed  Google Scholar 

  9. Yehezkeli, O. et al. Integrated photosystem II-based photo-bioelectrochemical cells. Nat. Commun. 3, 742 (2012).

    PubMed  Google Scholar 

  10. Romero, E., van Stokkum, I.H.M., Novoderezhkin, V.I., Dekker, J.P. & van Grondelle, R. Two different charge separation pathways in photosystem II. Biochemistry 49, 4300–4307 (2010).

    CAS  PubMed  Google Scholar 

  11. Romero, E. et al. Mixed exciton-charge-transfer states in photosystem II: Stark spectroscopy on site-directed mutants. Biophys. J. 103, 185–194 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Romero, E. et al. Quantum coherence in photosynthesis for efficient solar-energy conversion. Nat. Phys. 10, 676–682 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Renger, G. & Renger, T. Photosystem II: the machinery of photosynthetic water splitting. Photosynth. Res. 98, 53–80 (2008).

    CAS  PubMed  Google Scholar 

  14. Ananyev, G. & Dismukes, G.C. How fast can photosystem II split water? Kinetic performance at high and low frequencies. Photosynth. Res. 84, 355–365 (2005).

    CAS  PubMed  Google Scholar 

  15. Terasaki, N. et al. Photocurrent generation properties of Histag-photosystem II immobilized on nanostructured gold electrode. Thin Solid Films 516, 2553–2557 (2008).

    CAS  Google Scholar 

  16. Kato, M., Cardona, T., Rutherford, A.W. & Reisner, E. Covalent immobilization of oriented photosystem II on a nanostructured electrode for solar water oxidation. J. Am. Chem. Soc. 135, 10610–10613 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Badura, A. et al. Photo-induced electron transfer between photosystem 2 via cross-linked redox hydrogels. Electroanalysis 20, 1043–1047 (2008).

    CAS  Google Scholar 

  18. Cai, P. et al. Co-assembly of photosystem II/reduced graphene oxide multilayered biohybrid films for enhanced photocurrent. Nanoscale 7, 10908–10911 (2015).

    CAS  PubMed  Google Scholar 

  19. Umena, Y., Kawakami, K., Shen, J.-R. & Kamiya, N. Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å. Nature 473, 55–60 (2011).

    CAS  PubMed  Google Scholar 

  20. Barber, J., Morris, E. & Büchel, C. Revealing the structure of the photosystem II chlorophyll binding proteins, CP43 and CP47. Biochim. Biophys. Acta 1459, 239–247 (2000).

    CAS  PubMed  Google Scholar 

  21. Tributsch, H. Reaction of excited chlorophyll molecules at electrodes and in photosynthesis. Photochem. Photobiol. 16, 261–269 (1972).

    CAS  Google Scholar 

  22. Kay, A., Humphry-Baker, R. & Graetzel, M. Artificial photosynthesis. 2. Investigations on the mechanism of photosensitization of nanocrystalline TiO2 solar cells by chlorophyll derivatives. J. Phys. Chem. 98, 952–959 (1994).

    CAS  Google Scholar 

  23. Miyasaka, T., Watanabe, T., Fujishima, A. & Honda, K. Photoelectrochemical study of chlorophyll-a multilayers on SnO2 electrode. Photochem. Photobiol. 32, 217–222 (1980).

    CAS  Google Scholar 

  24. Barazzouk, S., Kamat, P.V. & Hotchandani, S. Photoinduced electron transfer between chlorophyll a and gold nanoparticles. J. Phys. Chem. B 109, 716–723 (2005).

    CAS  PubMed  Google Scholar 

  25. Seely, G.R. The energetics of electron-transfer reactions of chlorophyll and other compounds. Photochem. Photobiol. 27, 639–654 (1978).

    CAS  Google Scholar 

  26. Wakerley, D.W. & Reisner, E. Oxygen-tolerant proton reduction catalysis: much O2 about nothing? Energy Environ. Sci. 8, 2283–2295 (2015).

    CAS  Google Scholar 

  27. Nakato, Y., Chiyoda, T. & Tsubomura, H. Experimental determination of ionization potentials of organic amines, β-carotene and chlorophyll a. Bull. Chem. Soc. Jpn. 47, 3001–3005 (1974).

    CAS  Google Scholar 

  28. Huang, Z. et al. Dye-controlled interfacial electron transfer for high-current indium tin oxide photocathodes. Angew. Chem. Int. Ed. Engl. 54, 6857–6861 (2015).

    CAS  PubMed  Google Scholar 

  29. Krieger-Liszkay, A. Singlet oxygen production in photosynthesis. J. Exp. Bot. 56, 337–346 (2005).

    CAS  PubMed  Google Scholar 

  30. Bielski, B.H.J., Cabelli, D.E., Arudi, R.L. & Ross, A.B. Reactivity of perhydroxyl/superoxide radicals in aqueous solution. J. Phys. Chem. 14, 1041–1100 (1985).

    CAS  Google Scholar 

  31. Adamiak, W. & Opallo, M. Electrochemical redox processes of fullerene C60 and decamethylferrocene dissolved in cast 1,2-dichlorobenzene film in contact with aqueous electrolyte. J. Electroanal. Chem. 643, 82–88 (2010).

    CAS  Google Scholar 

  32. El-Khouly, M.E., Araki, Y., Fujitsuka, M., Watanabe, A. & Ito, O. Photoinduced electron transfer between chlorophylls (a/b) and fullerenes (C60/C70) studied by laser flash photolysis. Photochem. Photobiol. 74, 22–30 (2001).

    CAS  PubMed  Google Scholar 

  33. Yamakoshi, Y. et al. Active oxygen species generated from photoexcited fullerene (C60) as potential medicines: O2−· versus 1O2 . J. Am. Chem. Soc. 125, 12803–12809 (2003).

    CAS  PubMed  Google Scholar 

  34. Allakhverdiev, S.I. et al. Redox potentials of primary electron acceptor quinone molecule (QA) and conserved energetics of photosystem II in cyanobacteria with chlorophyll a and chlorophyll d. Proc. Natl. Acad. Sci. USA 108, 8054–8058 (2011).

    CAS  PubMed  Google Scholar 

  35. Kato, Y., Nagao, R. & Noguchi, T. Redox potential of the terminal quinone electron acceptor QB in photosystem II reveals the mechanism of electron transfer regulation. Proc. Natl. Acad. Sci. USA 113, 620–625 (2016).

    CAS  PubMed  Google Scholar 

  36. Shibamoto, T. et al. Species-dependence of the redox potential of the primary quinone electron acceptor QA in photosystem II verified by spectroelectrochemistry. FEBS Lett. 584, 1526–1530 (2010).

    CAS  PubMed  Google Scholar 

  37. Léger, C. & Bertrand, P. Direct electrochemistry of redox enzymes as a tool for mechanistic studies. Chem. Rev. 108, 2379–2438 (2008).

    PubMed  Google Scholar 

  38. Stevenson, G.P. et al. Theoretical analysis of the two-electron transfer reaction and experimental studies with surface-confined cytochrome c peroxidase using large-amplitude Fourier transformed AC voltammetry. Langmuir 28, 9864–9877 (2012).

    CAS  PubMed  Google Scholar 

  39. Johnson, G.N., Rutherford, A.W. & Krieger, A. A change in the midpoint potential of the quinone QA in Photosystem II associated with photoactivation of oxygen evolution. Biochim. Biophys. Acta 1229, 202–207 (1995).

    Google Scholar 

  40. Shibamoto, T., Kato, Y., Sugiura, M. & Watanabe, T. Redox potential of the primary plastoquinone electron acceptor QA in photosystem II from Thermosynechococcus elongatus determined by spectroelectrochemistry. Biochemistry 48, 10682–10684 (2009).

    CAS  PubMed  Google Scholar 

  41. Alcantara, K., Munge, B., Pendon, Z., Frank, H.A. & Rusling, J.F. Thin film voltammetry of spinach photosystem II. Proton-gated electron transfer involving the Mn4 cluster. J. Am. Chem. Soc. 128, 14930–14937 (2006).

    CAS  PubMed  Google Scholar 

  42. Satoh, K., Oh-hashi, M., Kashino, Y. & Koike, H. Mechanism of electron flow through the QB site in photosystem II. 1. Kinetics of the reduction of electron acceptors at the QB and plastoquinone sites in photosystem II particles from the cyanobacterium Synechococcus vulcanus. Plant Cell Physiol. 36, 597–605 (1995).

    CAS  Google Scholar 

  43. Kashino, Y., Yamashita, M., Okamoto, Y., Koike, H. & Satoh, K. Mechanisms of electron flow through the QB site in photosystem II. 3. Effects of the presence of membrane structure on the redox reactions at the QB site. Plant Cell Physiol. 37, 976–982 (1996).

    CAS  Google Scholar 

  44. Pospisil, P. Molecular mechanisms of production and scavenging of reactive oxygen species by photosystem II. Biochim. Biophys. Acta 1817, 218–231 (2012).

    CAS  PubMed  Google Scholar 

  45. Pospisil, P. Production of reactive oxygen species by photosystem II. Biochim. Biophys. Acta 1787, 1151–1160 (2009).

    CAS  PubMed  Google Scholar 

  46. Vöpel, T. et al. Simultaneous measurements of photocurrents and H2O2 evolution from solvent exposed photosystem 2 complexes. Biointerphases 11, 019001 (2015).

    PubMed  Google Scholar 

  47. Ishikita, H. & Knapp, E.-W. Redox potentials of chlorophylls and β-carotene in the antenna complexes of photosystem II. J. Am. Chem. Soc. 127, 1963–1968 (2005).

    CAS  PubMed  Google Scholar 

  48. Sugiura, M. & Inoue, Y. Highly purified thermo-stable oxygen-evolving photosystem II core complex from the thermophilic cyanobacterium Synechococcus elongatus having His-tagged CP43. Plant Cell Physiol. 40, 1219–1231 (1999).

    CAS  PubMed  Google Scholar 

  49. van Leeuwen, P.J., Nieveen, M.C., van de Meent, E.J., Dekker, J.P. & van Gorkom, H.J. Rapid and simple isolation of pure photosystem II core and reaction center particles from spinach. Photosynth. Res. 28, 149–153 (1991).

    CAS  PubMed  Google Scholar 

  50. van Roon, H., van Breemen, J.F.L., de Weerd, F.L., Dekker, J.P. & Boekema, E.J. Solubilization of green plant thylakoid membranes with n-dodecyl-α,D-maltoside. Implications for the structural organization of the Photosystem II, Photosystem I, ATP synthase and cytochrome b6f complexes. Photosynth. Res. 64, 155–166 (2000).

    CAS  PubMed  Google Scholar 

  51. Groot, M.-L. et al. Spectroscopic properties of the CP43 core antenna protein of photosystem II. Biophys. J. 77, 3328–3340 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Porra, R.J., Thompson, W.A. & Kriedemann, P.E. Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochim. Biophys. Acta 975, 384–394 (1989).

    CAS  Google Scholar 

  53. Merry, S.A.P. et al. Modulation of quantum yield of primary radical pair formation in photosystem II by site-directed mutagenesis affecting radical cations and anions. Biochemistry 37, 17439–17447 (1998).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the UK Engineering and Physical Sciences Research Council (EP/H00338X/2 to E. Reisner; DTA PhD studentship to K.P.S.), the UK Biology and Biotechnological Sciences Research Council (BB/K010220/1 to E. Reisner), and a Marie Curie International Incoming Fellowship (PIIF-GA-2012-328085 RPSII to J.Z.Z.). N.P. was supported by the Winton Programme for the Physics of Sustainability. E. Romero. and R.v.G. were supported by the VU Amsterdam, the Laserlab-Europe Consortium, the Foundation of Chemical Sciences of NWO (TOP grant 700.58.305), the European Research Council (Advanced Investigator grant 267333, PHOTPROT), and EU FP7 project PAPETS (GA 323901). R.v.G. gratefully acknowledges an 'Academy Professor' grant from the Royal Netherlands Academy of Arts and Sciences. We also thank K. Brinkert and W.A. Rutherford (Imperial College London, London, UK) for samples of T. elongatus PSII, and H. van Roon for preparation of the spinach PSII samples. Lastly, we thank D.W. Wakerley and T.E. Rosser for valuable discussions.

Author information

Authors and Affiliations

Authors

Contributions

J.Z.Z. and E. Reisner conceived the research. J.Z.Z. performed all experiments and wrote the manuscript. K.P.S. provided the ITO electrodes. E. Romero and R.v.G. provided the spinach PSII. J.Z.Z., N.P., E. Romero and E. Reisner added to the discussion and contributed to the preparation of the manuscript. E. Reisner supervised the work.

Corresponding author

Correspondence to Erwin Reisner.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results and Supplementary Figures 1–17. (PDF 2429 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Sokol, K., Paul, N. et al. Competing charge transfer pathways at the photosystem II–electrode interface. Nat Chem Biol 12, 1046–1052 (2016). https://doi.org/10.1038/nchembio.2192

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2192

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing