Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A new metal binding domain involved in cadmium, cobalt and zinc transport

Abstract

The P1B-ATPases, which couple cation transport across membranes to ATP hydrolysis, are central to metal homeostasis in all organisms. An important feature of P1B-ATPases is the presence of soluble metal binding domains (MBDs) that regulate transport activity. Only one type of MBD has been characterized extensively, but bioinformatics analyses indicate that a diversity of MBDs may exist in nature. Here we report the biochemical, structural and functional characterization of a new MBD from the Cupriavidus metallidurans P1B-4-ATPase CzcP (CzcP MBD). The CzcP MBD binds two Cd2+, Co2+ or Zn2+ ions in distinct and unique sites and adopts an unexpected fold consisting of two fused ferredoxin-like domains. Both in vitro and in vivo activity assays using full-length CzcP, truncated CzcP and several variants indicate a regulatory role for the MBD and distinct functions for the two metal binding sites. Taken together, these findings elucidate a previously unknown MBD and suggest new regulatory mechanisms for metal transport by P1B-ATPases.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The P1B-4-ATPase subfamily.
Figure 2: Spectroscopic characterization of the C. metallidurans CzcP MBD.
Figure 3: The C. metallidurans CzcP MBD.
Figure 4: Functional characterization of CzcP.

Accession codes

Primary accessions

Protein Data Bank

References

  1. Palmgren, M.G. & Nissen, P. P-type ATPases. Annu. Rev. Biophys. 40, 243–266 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. Argüello, J.M. Identification of ion-selectivity determinants in heavy-metal transport P1B-type ATPases. J. Membr. Biol. 195, 93–108 (2003).

    Article  PubMed  Google Scholar 

  3. Argüello, J.M., Eren, E. & González-Guerrero, M. The structure and function of heavy metal transport P1B-type ATPases. Biometals 20, 233–248 (2007).

    Article  PubMed  Google Scholar 

  4. Smith, A.T., Smith, K.P. & Rosenzweig, A.C. Diversity of the metal-transporting P1B-type ATPases. J. Biol. Inorg. Chem. 19, 947–960 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Argüello, J.M., González-Guerrero, M. & Raimunda, D. Bacterial transition metal P1B-ATPases: transport mechanism and roles in virulence. Biochemistry 50, 9940–9949 (2011).

    Article  PubMed  Google Scholar 

  6. Rosenzweig, A.C. & Arguello, J.M. Toward a molecular understanding of metal transport by P1B-type ATPases. in Metal Transporters Vol. 69 (eds. Lutsenko, S. & Argüello, J.M.) 113–136 (Elsevier, San Diego, 2012).

  7. Williams, L.E. & Mills, R.F. P1B-ATPases—an ancient family of transition metal pumps with diverse functions in plants. Trends Plant Sci. 10, 491–502 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Gupta, A. & Lutsenko, S. Evolution of copper transporting ATPases in eukaryotic organisms. Curr. Genomics 13, 124–133 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lutsenko, S., Gupta, A., Burkhead, J.L. & Zuzel, V. Cellular multitasking: the dual role of human Cu-ATPases in cofactor delivery and intracellular copper balance. Arch. Biochem. Biophys. 476, 22–32 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Andersson, M. et al. Copper-transporting P-type ATPases use a unique ion-release pathway. Nat. Struct. Mol. Biol. 21, 43–48 (2014).

    Article  CAS  PubMed  Google Scholar 

  11. Gourdon, P. et al. Crystal structure of a copper-transporting PIB-type ATPase. Nature 475, 59–64 (2011).

    Article  CAS  PubMed  Google Scholar 

  12. Wang, K. et al. Structure and mechanism of Zn2+-transporting ATPase. Nature 514, 518–522 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Boal, A.K. & Rosenzweig, A.C. Structural biology of copper trafficking. Chem. Rev. 109, 4760–4779 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Singleton, C. & LeBrun, N.E. Atx1-like chaperones and their cognate P-type ATPases: copper-binding and transfer. Biometals 20, 275–289 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Banci, L. et al. A new zinc-protein coordination site in intracellular metal trafficking: solution structure of the apo and Zn(II) forms of ZntA(46–118). J. Mol. Biol. 323, 883–897 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Fu, Y. et al. A new structural paradigm in copper resistance in Streptococcus pneumoniae. Nat. Chem. Biol. 9, 177–183 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mana-Capelli, S., Mandal, A.K. & Argüello, J.M. Archaeoglobus fulgidus CopB is a thermophilic Cu2+-ATPase. J. Biol. Chem. 278, 40534–40541 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Traverso, M.E. et al. Identification of a hemerythrin-like domain in a P1B-type transport ATPase. Biochemistry 49, 7060–7068 (2010).

    Article  CAS  PubMed  Google Scholar 

  19. Zielazinski, E.L., Cutsail, G.E. III, Hoffman, B.M., Stemmler, T.L. & Rosenzweig, A.C. Characterization of a cobalt-specific P1B-ATPase. Biochemistry 51, 7891–7900 (2012).

    Article  CAS  PubMed  Google Scholar 

  20. Raimunda, D., Long, J.E., Sassetti, C.M. & Arguello, J.M. Role in metal homeostasis of CtpD, a Co2+ transporting P1B4-ATPase of Mycobacterium smegmatis. Mol. Microbiol. 84, 1139–1149 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Raimunda, D., Long, J.E., Padilla-Benavides, T., Sassetti, C.M. & Arguello, J.M. Differential roles for the Co2+/Ni2+ transporting ATPases, CtpD and CtpJ, in Mycobacterium tuberculosis virulence. Mol. Microbiol. 91, 185–197 (2014).

    Article  CAS  PubMed  Google Scholar 

  22. Scherer, J. & Nies, D.H. CzcP is a novel efflux system contributing to transition metal resistance in Cupriavidus metallidurans CH34. Mol. Microbiol. 73, 601–621 (2009).

    Article  CAS  PubMed  Google Scholar 

  23. Whitmore, L. & Wallace, B.A. DICHROWEB, an online server for protein secondary structure analyses from circular dichroism spectroscopic data. Nucleic Acids Res. 32, W668–W673 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Whitmore, L. & Wallace, B.A. Protein secondary structure analyses from circular dichroism spectroscopy: methods and reference databases. Biopolymers 89, 392–400 (2008).

    Article  CAS  PubMed  Google Scholar 

  25. Zelazowski, A.J., Szymanska, J.A., Law, A.Y.C. & Stillman, M.J. Spectroscopic properties of the α fragment of metallothionein. J. Biol. Chem. 259, 12960–12963 (1984).

    CAS  PubMed  Google Scholar 

  26. Frankel, A.D., Berg, J.M. & Pabo, C.O. Metal-dependent folding of a single zinc finger from transcription factor IIIA. Proc. Natl. Acad. Sci. USA 84, 4841–4845 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Giedroc, D.P., Keating, K.M., Martin, C.T., Williams, K.R. & Coleman, J.E. Zinc metalloproteins involved in replication and transcription. J. Inorg. Biochem. 28, 155–169 (1986).

    Article  CAS  PubMed  Google Scholar 

  28. Maret, W. & Vallee, B.L. Cobalt as probe and label of proteins. Methods Enzymol. 226, 52–71 (1993).

    Article  CAS  PubMed  Google Scholar 

  29. DeSilva, T.M., Veglia, G. & Opella, S.J. Solution structures of the reduced and Cu(I) bound forms of the first metal binding sequence of ATP7A associated with Menkes disease. Proteins 61, 1038–1049 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Banci, L., Bertini, I., Ciofi-Baffoni, S., Huffman, D.L. & O'Halloran, T.V. Solution structure of the yeast copper transporter domain Ccc2a in the apo and Cu(I) loaded states. J. Biol. Chem. 276, 8415–8426 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Banci, L. et al. Structural basis for metal binding specificity: the N-terminal cadmium binding domain of the P1-type ATPase CadA. J. Mol. Biol. 356, 638–650 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Achila, D. et al. Structure of human Wilson protein domains 5 and 6 and their interplay with domain 4 and the copper chaperone HAH1 in copper uptake. Proc. Natl. Acad. Sci. USA 103, 5729–5734 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mandal, A.K., Cheung, W.D. & Argüello, J.M. Characterization of a thermophilic P-type Ag+/Cu+-ATPase from the extremophile Archaeglobus fulgidus. J. Biol. Chem. 277, 7201–7208 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Sharma, R., Rensing, C., Rosen, B.P. & Mitra, B. The ATP hydrolytic activity of purified ZntA, a Pb(Ii)/Cd(Ii)/Zn(Ii)-translocating ATPase from Escherichia coli. J. Biol. Chem. 275, 3873–3878 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Mandal, A.K. & Argüello, J.M. Functional roles of metal binding domains of the Archaeoglobus fulgidus Cu+-ATPase CopA. Biochemistry 42, 11040–11047 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Mattle, D. et al. On allosteric modulation of P-type Cu+-ATPases. J. Mol. Biol. 425, 2299–2308 (2013).

    Article  CAS  PubMed  Google Scholar 

  37. Eren, E., Kennedy, D.C., Maroney, M.J. & Argüello, J.M. A novel regulatory metal binding domain is present in the C terminus of Arabidopsis Zn2+-ATPase HMA2. J. Biol. Chem. 281, 33881–33891 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. Bækgaard, L. et al. A combined zinc/cadmium sensor and zinc/cadmium export regulator in a heavy metal pump. J. Biol. Chem. 285, 31243–31252 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Monchy, S. et al. Plasmids pMOL28 and pMOL30 of Cupriavidus metallidurans are specialized in the maximal viable response to heavy metals. J. Bacteriol. 189, 7417–7425 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zoropogui, A., Gambarelli, S. & Covés, J. CzcE from Cupriavidus metallidurans CH34 is a copper-binding protein. Biochem. Biophys. Res. Commun. 365, 735–739 (2008).

    Article  CAS  PubMed  Google Scholar 

  41. Petit-Haertlein, I. et al. Evidence for conformational changes upon copper binding to Cupriavidus metallidurans CzcE. Biochemistry 49, 1913–1922 (2010).

    Article  CAS  PubMed  Google Scholar 

  42. Lanzetta, P.A., Alvarez, L.J., Reinach, P.S. & Candia, O.A. Improved assay for nanomole amounts of inorganic-phosphate. Anal. Biochem. 100, 95–97 (1979).

    Article  CAS  PubMed  Google Scholar 

  43. Bencze, K.Z., Kondapalli, K.C. & Stemmler, T.L. X-ray absorption spectroscopy. in Applications of Physical Methods to Inorganic and Bioinorganic Chemistry: Handbook, Encyclopedia of Inorganic Chemistry (eds. Scott, R.A. & Lukehart, C.M.) 513–528 (John Wiley & Sons, Ltd., Chicester, UK, 2007).

  44. Ankudinov, A.L. & Rehr, J.J. Relativistic calculations of spin-dependent X-ray absorption spectra. Phys. Rev. B 56, R1712–R1715 (1997).

    Article  CAS  Google Scholar 

  45. Lee, P.A., Citrin, P.H., Eisenberger, P. & Kincaid, B.M. Extended X-ray absorption fine structure— its strengths and limitations as a structural tool. Rev. Mod. Phys. 53, 769–806 (1981).

    Article  CAS  Google Scholar 

  46. Wang, B. et al. Structure and ubiquitin interactions of the conserved zinc finger domain of Np14. J. Biol. Chem. 278, 20225–20234 (2003).

    Article  CAS  PubMed  Google Scholar 

  47. Winter, G. xia2: an expert system for macromolecular crystallography data reduction. J. Appl. Crystallogr. 43, 186–190 (2010).

    CAS  Google Scholar 

  48. Adams, P.D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  PubMed  Google Scholar 

  50. Winn, M.D. et al. Overview of the CCP4 suite and current developments. Acta Crystallogr. D Biol. Crystallogr. 67, 235–242 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Murshudov, G.N. et al. REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr. D Biol. Crystallogr. 67, 355–367 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Lebedev, A.A. et al. JLigand: a graphical tool for the CCP4 template-restraint library. Acta Crystallogr. D Biol. Crystallogr. 68, 431–440 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by US National Institutes of Health grants GM58518 (A.C.R.), DK068139 (T.L.S.), F32GM105339 (A.T.S.) and T32HL120822 (D.B.). Sequence searches used both database and analysis functions of the Universal Protein Resource (UniProt) Knowledgebase and Reference Clusters (http://www.uniprot.org/) and the US National Center for Biotechnology Information (http://www.ncbi.nlm.nih.gov/). Portions of this research were carried out at the National Synchrotron Light Source (NSLS). NSLS, located at Brookhaven National Laboratory, is supported by the US Department of Energy, Division of Materials Sciences and Division of Chemical Sciences under contract no. DE-AC02-98CH10886.

Author information

Authors and Affiliations

Authors

Contributions

A.T.S. and D.B. conducted all of the experiments, and A.C.R. and T.L.S. directed the research. A.T.S., D.B., T.L.S. and A.C.R. wrote the manuscript.

Corresponding author

Correspondence to Amy C Rosenzweig.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Figures 1–10 and Supplementary Tables 1–4. (PDF 33719 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smith, A., Barupala, D., Stemmler, T. et al. A new metal binding domain involved in cadmium, cobalt and zinc transport. Nat Chem Biol 11, 678–684 (2015). https://doi.org/10.1038/nchembio.1863

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1863

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing