Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Control of carotenoid biosynthesis through a heme-based cis-trans isomerase

Abstract

Plants synthesize carotenoids, which are essential for plant development and survival. These metabolites also serve as essential nutrients for human health. The biosynthetic pathway for all plant carotenoids occurs in chloroplasts and other plastids and requires 15-cis-ζ-carotene isomerase (Z-ISO). It was not known whether Z-ISO catalyzes isomerization alone or in combination with other enzymes. Here we show that Z-ISO is a bona fide enzyme and integral membrane protein. Z-ISO independently catalyzes the cis-trans isomerization of the 15-15′ carbon-carbon double bond in 9,15,9′-cis-ζ-carotene to produce the substrate required by the subsequent biosynthetic-pathway enzyme. We discovered that isomerization depends upon a ferrous heme b cofactor that undergoes redox-regulated ligand switching between the heme iron and alternate Z-ISO amino acid residues. Heme b–dependent isomerization of a large hydrophobic compound in a membrane was previously undescribed. As an isomerase, Z-ISO represents a new prototype for heme b proteins and potentially uses a new chemical mechanism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Z-ISO is an isomerase and integral membrane protein localized to chloroplasts.
Figure 2: Z-ISO contains heme iron.
Figure 3: EPR shows multiple heme species.
Figure 4: MCD reveals redox-dependent changes in ligand coordination.
Figure 5: Testing mutation of putative heme ligands on enzyme activity, heme binding and UV-vis spectrum of Z-ISO.
Figure 6: Proposed mechanism of ligand rearrangement leading to active isomerization.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Moise, A.R., Al-Babili, S. & Wurtzel, E.T. Mechanistic aspects of carotenoid biosynthesis. Chem. Rev. 114, 164–193 (2014).

    Article  CAS  PubMed  Google Scholar 

  2. Wurtzel, E.T., Cuttriss, A. & Vallabhaneni, R. Maize provitamin A carotenoids, current resources and future metabolic engineering challenges. Front. Plant Sci. 3, 29 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Chen, Y., Li, F. & Wurtzel, E.T. Isolation and characterization of the Z-ISO gene encoding a missing component of carotenoid biosynthesis in plants. Plant Physiol. 153, 66–79 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Li, F., Murillo, C. & Wurtzel, E.T. Maize Y9 encodes a product essential for 15-cis zetacarotene isomerization. Plant Physiol. 144, 1181–1189 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Janick-Buckner, D., O'Neal, J., Joyce, E. & Buckner, B. Genetic and biochemical analysis of the y9 gene of maize, a carotenoid biosynthetic gene. Maydica 46, 41–46 (2001).

    Google Scholar 

  6. Tatusova, T.A. & Madden, T.L. Blast 2 sequences: a new tool for comparing protein and nucleotide sequences. FEMS Microbiol. Lett. 174, 247–250 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Jones, D.T. Improving the accuracy of transmembrane protein topology prediction using evolutionary information. Bioinformatics 23, 538–544 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Shumskaya, M. & Wurtzel, E.T. The carotenoid biosynthetic pathway: thinking in all dimensions. Plant Sci. 208, 58–63 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ginalski, K., Elofsson, A., Fischer, D. & Rychlewski, L. 3D-Jury: a simple approach to improve protein structure predictions. Bioinformatics 19, 1015–1018 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Madej, M.G., Nasiri, H.R., Hilgendorff, N.S., Schwalbe, H. & Lancaster, C.R.D. Evidence for transmembrane proton transfer in a dihaem-containing membrane protein complex. EMBO J. 25, 4963–4970 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Vallat, B.K. et al. Building and assessing atomic models of proteins from structural templates: learning and benchmarks. Proteins 76, 930–945 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Thomas, P.E., Ryan, D. & Levin, W. An improved staining procedure for the detection of the peroxidase activity of cytochrome P-450 on sodium dodecyl sulfate polyacrylamide gels. Anal. Biochem. 75, 168–176 (1976).

    Article  CAS  PubMed  Google Scholar 

  13. Nygaard, T.K., Liu, M., McClure, M.J. & Lei, B. Identification and characterization of the heme-binding proteins SeShp and SeHtsA of Streptococcus equi subspecies equi. BMC Microbiol. 6, 82 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Owens, C.P., Du, J., Dawson, J.H. & Goulding, C.W. Characterization of heme ligation properties of Rv0203, a secreted heme binding protein involved in Mycobacterium tuberculosis heme uptake. Biochemistry 51, 1518–1531 (2012).

    Article  CAS  PubMed  Google Scholar 

  15. Boffi, A., Chiancone, E., Takahashi, S. & Rousseau, D.L. Stereochemistry of the Fe(II)- and Fe(III)-cyanide complexes of the homodimeric Scapharca inaequivalvis hemoglobin: a resonance Raman and FTIR study. Biochemistry 36, 4505–4509 (1997).

    Article  CAS  PubMed  Google Scholar 

  16. Tsai, A.L. et al. Heme coordination of prostaglandin H synthase. J. Biol. Chem. 268, 8554–8563 (1993).

    CAS  PubMed  Google Scholar 

  17. Geng, J., Dornevil, K. & Liu, A. Chemical rescue of the distal histidine mutants of tryptophan 2,3-dioxygenase. J. Am. Chem. Soc. 134, 12209–12218 (2012).

    Article  CAS  PubMed  Google Scholar 

  18. Zoppellaro, G. et al. Review: studies of ferric heme proteins with highly anisotropic/highly axial low spin (S = 1/2) electron paramagnetic resonance signals with bis-histidine and histidine-methionine axial iron coordination. Biopolymers 91, 1064–1082 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhong, F., Lisi, G.P., Collins, D.P., Dawson, J.H. & Pletneva, E.V. Redox-dependent stability, protonation, and reactivity of cysteine-bound heme proteins. Proc. Natl. Acad. Sci. USA 111, E306–E315 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Smith, A.T. et al. Identification of Cys94 as the distal ligand to the Fe(III) heme in the transcriptional regulator RcoM-2 from Burkholderia xenovorans. J. Biol. Inorg. Chem. 17, 1071–1082 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Enemark, J.H. & Feltham, R.D. Principles of structure, bonding, and reactivity for metal nitrosyl complexes. Coord. Chem. Rev. 13, 339–406 (1974).

    Article  CAS  Google Scholar 

  22. Yonetani, T., Yamamoto, H., Erman, J.E., Leigh, J.S. Jr. & Reed, G.H. Electromagnetic properties of hemoproteins. V. Optical and electron paramagnetic resonance characteristics of nitric oxide derivatives of metalloporphyrin-apohemoprotein complexes. J. Biol. Chem. 247, 2447–2455 (1972).

    CAS  PubMed  Google Scholar 

  23. Sun, J., Wilks, A., Ortiz de Montellano, P.R. & Loehr, T.M. Resonance Raman and EPR spectroscopic studies on heme-heme oxygenase complexes. Biochemistry 32, 14151–14157 (1993).

    Article  CAS  PubMed  Google Scholar 

  24. Vickery, L., Nozawa, T. & Sauer, K. Magnetic circular dichroism studies of low-spin cytochromes: temperature dependence and effects of axial coordination on the spectra of cytochrome c and cytochrome b5. J. Am. Chem. Soc. 98, 351–357 (1976).

    Article  CAS  PubMed  Google Scholar 

  25. Vickery, L., Nozawa, T. & Sauer, K. Magnetic circular dichroism studies of myoglobin complexes: correlations with heme spin state and axial ligation. J. Am. Chem. Soc. 98, 343–350 (1976).

    Article  CAS  PubMed  Google Scholar 

  26. Sono, M., Dawson, J.H., Hall, K. & Hager, L.P. Ligand and halide binding properties of chloroperoxidase: peroxidase-type active site heme environment with cytochrome P-450 type endogenous axial ligand and spectroscopic properties. Biochemistry 25, 347–356 (1986).

    Article  CAS  PubMed  Google Scholar 

  27. Dawson, J.H., Andersson, L.A. & Sono, M. Spectroscopic investigations of ferric cytochrome P-450-CAM ligand complexes: identification of the ligand trans to cysteinate in the native enzyme. J. Biol. Chem. 257, 3606–3617 (1982).

    CAS  PubMed  Google Scholar 

  28. Li, T., Bonkovsky, H.L. & Guo, J.T. Structural analysis of heme proteins: implications for design and prediction. BMC Struct. Biol. 11, 13 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wouters, J. et al. Catalytic mechanism of Escherichia coli isopentenyl diphosphate isomerase involves Cys-67, Glu-116, and Tyr-104 as suggested by crystal structures of complexes with transition state analogues and irreversible inhibitors. J. Biol. Chem. 278, 11903–11908 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. D'Angelo, P. et al. Unusual heme iron-lipid acyl chain coordination in Escherichia coli flavohemoglobin. Biophys. J. 86, 3882–3892 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Crabtree, R.H. in The Organometallic Chemistry of the Transition Metals 125–158 (John Wiley & Sons, 2005).

  32. Pearson, R.G. Hard and soft acids and bases, HSAB, part II: underlying theories. J. Chem. Educ. 45, 643 (1968).

    Article  CAS  Google Scholar 

  33. Heipieper, H.J., Neumann, G., Kabelitz, N., Kastner, M. & Richnow, H.H. Carbon isotope fractionation during cis-trans isomerization of unsaturated fatty acids in Pseudomonas putida. Appl. Microbiol. Biotechnol. 66, 285–290 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Williams, P.A. et al. Haem-ligand switching during catalysis in crystals of a nitrogen-cycle enzyme. Nature 389, 406–412 (1997).

    Article  CAS  PubMed  Google Scholar 

  35. Geng, J., Davis, I., Liu, F. & Liu, A. Bis-Fe(IV): nature's sniper for long-range oxidation. J. Biol. Inorg. Chem. 19, 1057–1067 (2014).

    Article  CAS  PubMed  Google Scholar 

  36. Richter, A.S. & Grimm, B. Thiol-based redox control of enzymes involved in the tetrapyrrole biosynthesis pathway. Front. Plant Sci. 4, 371 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Fanciullino, A.L., Bidel, L.P.R. & Urban, L. Carotenoid responses to environmental stimuli: integrating redox and carbon controls into a fruit model. Plant Cell Environ. 37, 273–289 (2014).

    Article  CAS  PubMed  Google Scholar 

  38. Davison, P.A. Overexpression of β-carotene hydroxylase enhances stress tolerance in Arabidopsis. Nature 418, 203–206 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. Johnson, M.P. et al. Elevated zeaxanthin bound to oligomeric LHCII enhances the resistance of Arabidopsis to photooxidative stress by a lipid-protective, antioxidant mechanism. J. Biol. Chem. 282, 22605–22618 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Walter, M.H., Floss, D.S. & Strack, D. Apocarotenoids: hormones, mycorrhizal metabolites and aroma volatiles. Planta 232, 1–17 (2010).

    Article  CAS  PubMed  Google Scholar 

  41. Li, F., Vallabhaneni, R. & Wurtzel, E.T. PSY3, a new member of the phytoene synthase gene family conserved in the Poaceae and regulator of abiotic-stress-induced root carotenogenesis. Plant Physiol. 146, 1333–1345 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gas, E., Flores-Perez, U., Sauret-Gueto, S. & Rodriguez-Concepcion, M. Hunting for plant nitric oxide synthase provides new evidence of a central role for plastids in nitric oxide metabolism. Plant Cell 21, 18–23 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chang, H.-L., Hsu, Y.-T., Kang, C.-Y. & Lee, T.-M. Nitric oxide down-regulation of carotenoid synthesis and PSII activity in relation to very high light-induced singlet oxygen production and oxidative stress in Chlamydomonas reinhardtii. Plant Cell Physiol. 54, 1296–1315 (2013).

    Article  CAS  PubMed  Google Scholar 

  44. Khatsenko, O. Interactions between nitric oxide and cytochrome P-450 in the liver. Biochemistry (Mosc) 63, 833–839 (1998).

    CAS  Google Scholar 

  45. Cooper, C.E. Nitric oxide and iron proteins. Biochim. Biophys. Acta 1411, 290–309 (1999).

    Article  CAS  PubMed  Google Scholar 

  46. Munro, A., Girvan, H., McLean, K., Cheesman, M. & Leys, D. in Tetrapyrroles, Birth, Life and Death (eds. Warren, M. & Smith, A.) 160–183 (Landes Bioscience, Austin, Texas, USA, 2009).

  47. Doyle, S.A. High-throughput cloning for proteomics research. Methods Mol. Biol. 310, 107–113 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. Donnelly, M.I. et al. An expression vector tailored for large-scale, high-throughput purification of recombinant proteins. Protein Expr. Purif. 47, 446–454 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Seiler, C.Y. et al. DNASU plasmid and PSI:Biology-Materials repositories: resources to accelerate biological research. Nucleic Acids Res. 42, D1253–D1260 (2014).

    Article  CAS  PubMed  Google Scholar 

  50. Britton, G., Liaaen-Jensen, S. & Pfander, H. in Carotenoids: Spectroscopy Vol. 1B (eds. Britton, G., Liaaen-Jensen, S. & Pfander, H.) 13–62 (Birkhäuser, Basel, 1995).

  51. Ter Horst, R. & Lolkema, J.S. Rapid screening of membrane topology of secondary transport proteins. Biochim Biophys Acta 1798, 672–680 (2010).

    Article  CAS  PubMed  Google Scholar 

  52. Shumskaya, M., Bradbury, L.M.T., Monaco, R.R. & Wurtzel, E.T. Plastid localization of the key carotenoid enzyme phytoene synthase is altered by isozyme, allelic variation, and activity. Plant Cell 24, 3725–3741 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Quinlan, R.F. et al. Synergistic interactions between carotene ring hydroxylases drive lutein formation in plant carotenoid biosynthesis. Plant Physiol. 160, 204–214 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Varanasi, L. & Hosler, J.P. Subunit III-depleted cytochrome c oxidase provides insight into the process of proton uptake by proteins. Biochim. Biophys. Acta 1817, 545–551 (2012).

    Article  CAS  PubMed  Google Scholar 

  55. Berry, E.A. & Trumpower, B.L. Simultaneous determination of hemes a, b, and c from pyridine hemochrome spectra. Anal. Biochem. 161, 1–15 (1987).

    Article  CAS  PubMed  Google Scholar 

  56. Thomas, P.E., Ryan, D. & Levin, W. An improved staining procedure for the detection of the peroxidase activity of cytochrome P-450 on sodium dodecyl sulfate polyacrylamide gels. Anal. Biochem. 75, 168–176 (1976).

    Article  CAS  PubMed  Google Scholar 

  57. Pond, A.E., Roach, M.P., Thomas, M.R., Boxer, S.G. & Dawson, J.H. The H93G myoglobin cavity mutant as a versatile template for modeling heme proteins: ferrous, ferric, and ferryl mixed-ligand complexes with imidazole in the cavity. Inorg. Chem. 39, 6061–6066 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank W. Hendrickson (Columbia University and New York Consortium on Membrane Protein Structure) for helpful discussions and use of the New York Structural Biology Center facilities. We thank M. Inouye (University of Medicine and Dentistry of New Jersey) for valuable advice on codon optimization and L. Bradbury (Lehman College and CUNY) for helpful discussions. E.T.W. was funded by the US National Institutes of Health (grant GM081160), CUNY and Lehman College. E.T.W. was also supported by travel funds from the Gordon Research Conferences to attend the Metals in Biology Gordon Research Conference, where E.T.W. was able to initiate collaborations with heme experts J.P. Hosler, A. Liu and J.H. Dawson through much-appreciated help from H. Gray (California Institute of Technology). The New York Consortium on Membrane protein structure (B.K. and J.D.L.) was supported through funds obtained from the US National Institutes of General Medical Sciences Protein Structure Initiative (PSI) program (grant GM095315). J.H.D. was funded by the US National Institutes of Health grant GM 26730; A.L. was funded by US National Institutes of Health grant R01GM108988 and the Georgia Research Alliance Distinguished Scholar Program. C.A.-D. was funded by The New Zealand Institute for Plant and Food Research Limited, New Zealand.

Author information

Authors and Affiliations

Authors

Contributions

Wet-laboratory experiments were performed by J.B. (cloning, protein expression and purification, enzyme assays, HPLC, carotenoid analyses, mutagenesis, heme assays and UV-vis spectroscopy) and B.K. (cloning and protein expression), J.D.L. (design of pNYCOMPS vector, cloning, expression and protein-purification protocols) and J.P.H. (ICP-OES, UV-vis spectroscopy, heme assays and CO binding). EPR experiments were performed by J.G. and A.L. MCD experiments were performed by A.M., M. Sono and J.H.D. Localization and import, including related gene cloning, was conducted by M. Shumskaya. J.B. and E.T.W. performed bioinformatic analyses. C.A.-D. prepared mutant Z-ISO fusion proteins while on a short-term sabbatical in the Wurtzel laboratory. All authors contributed to data analysis and to the writing and editing of the manuscript.

Corresponding author

Correspondence to Eleanore T Wurtzel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Tables 1–3 and Supplementary Figures 1–10 (PDF 1218 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beltrán, J., Kloss, B., Hosler, J. et al. Control of carotenoid biosynthesis through a heme-based cis-trans isomerase. Nat Chem Biol 11, 598–605 (2015). https://doi.org/10.1038/nchembio.1840

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1840

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing