Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Squalene hopene cyclases are protonases for stereoselective Brønsted acid catalysis

Abstract

For many important reactions catalyzed in chemical laboratories, the corresponding enzymes are missing, representing a restriction in biocatalysis. Although nature provides highly developed machineries appropriate to catalyze such reactions, their potential is often ignored. This also applies to Brønsted acid catalysis, a powerful method to promote a myriad of chemical transformations. Here, we report on the unique protonation machinery of a squalene hopene cyclase (SHC). Active site engineering of this highly evolvable enzyme yielded a platform for enzymatic Brønsted acid catalysis in water. This is illustrated by activation of different functional groups (alkenes, epoxides and carbonyls), enabling the highly stereoselective syntheses of various cyclohexanoids while uncoupling SHC from polycyclization chemistry. This work highlights the potential of systematic investigation on nature's catalytic machineries to generate unique catalysts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Natural activity, protonation machinery and active site of AacSHC.
Figure 2: Cyclization of geraniol (4) and (S)-6,7-epoxygeraniol (7).
Figure 3: Prins reaction of citronellal (9).

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Turner, N.J. & Reilly, E.O. Biocatalytic retrosynthesis. Nat. Chem. Biol. 9, 285–288 (2013).

    Article  CAS  Google Scholar 

  2. Nestl, B.M., Hammer, S.C., Nebel, B.A. & Hauer, B. New generation of biocatalysts for organic synthesis. Angew. Chem. Int. Ed. Engl. 53, 3070–3095 (2014).

    Article  CAS  Google Scholar 

  3. Bornscheuer, U.T. et al. Engineering the third wave of biocatalysis. Nature 485, 185–194 (2012).

    Article  CAS  Google Scholar 

  4. Siegel, J.B. et al. Computational design of an enzyme catalyst for a stereoselective bimolecular Diels-Alder reaction. Science 329, 309–313 (2010).

    Article  CAS  Google Scholar 

  5. Hyster, T.K., Knörr, L., Ward, T.R. & Rovis, T. Biotinylated Rh(iii) complexes in engineered streptavidin for accelerated asymmetric C-H activation. Science 338, 500–503 (2012).

    Article  CAS  Google Scholar 

  6. Bornscheuer, U.T. & Kazlauskas, R.J. Catalytic promiscuity in biocatalysis: using old enzymes to form new bonds and follow new pathways. Angew. Chem. Int. Ed. Engl. 43, 6032–6040 (2004).

    Article  CAS  Google Scholar 

  7. Breslow, R. Biomimetic chemistry: biology as an inspiration. J. Biol. Chem. 284, 1337–1342 (2009).

    Article  CAS  Google Scholar 

  8. Knowles, R.R. & Jacobsen, E.N. Attractive noncovalent interactions in asymmetric catalysis: links between enzymes and small molecule catalysts. Proc. Natl. Acad. Sci. USA 107, 20678–20685 (2010).

    Article  CAS  Google Scholar 

  9. Coelho, P.S., Brustad, E.M., Kannan, A. & Arnold, F.H. Olefin cyclopropanation via carbene transfer catalyzed by engineered cytochrome P450 enzymes. Science 339, 307–310 (2013).

    Article  CAS  Google Scholar 

  10. McIntosh, J.A. et al. Enantioselective intramolecular C-H amination catalyzed by engineered cytochrome P450 enzymes in vitro and in vivo. Angew. Chem. Int. Ed. Engl. 52, 9309–9312 (2013).

    Article  CAS  Google Scholar 

  11. Wang, Z.J., Peck, N.E., Renata, H. & Arnold, F.H. Cytochrome P450-catalyzed insertion of carbenoids into N-H bonds. Chem. Sci. 5, 598–601 (2014).

    Article  CAS  Google Scholar 

  12. Akiyama, T. Stronger Brønsted acids. Chem. Rev. 107, 5744–5758 (2007).

    Article  CAS  Google Scholar 

  13. Terada, M. Binaphthol-derived phosphoric acid as a versatile catalyst for enantioselective carbon-carbon bond forming reactions. Chem. Commun. (Camb.) 4097–4112 (2008).

  14. Kampen, D., Reisinger, C.M. & List, B. Chiral Brønsted acids for asymmetric organocatalysis. Top. Curr. Chem. 291, 395–456 (2010).

    Article  CAS  Google Scholar 

  15. Rueping, M., Nachtsheim, B.J., Ieawsuwan, W. & Atodiresei, I. Modulating the acidity: highly acidic Brønsted acids in asymmetric catalysis. Angew. Chem. Int. Ed. Engl. 50, 6706–6720 (2011).

    Article  CAS  Google Scholar 

  16. Cheon, C.H. & Yamamoto, H. Super Brønsted acid catalysis. Chem. Commun. (Camb.) 47, 3043–3056 (2011).

    Article  CAS  Google Scholar 

  17. Jiang, J., He, X. & Cane, D.E. Biosynthesis of the earthy odorant geosmin by a bifunctional Streptomyces coelicolor enzyme. Nat. Chem. Biol. 3, 711–715 (2007).

    Article  CAS  Google Scholar 

  18. Kim, H.J., Ruszczycky, M.W. & Liu, H.-W. Current developments and challenges in the search for a naturally selected Diels-Alderase. Curr. Opin. Chem. Biol. 16, 124–131 (2012).

    Article  CAS  Google Scholar 

  19. Stecher, H. et al. Biocatalytic Friedel-Crafts alkylation using non-natural cofactors. Angew. Chem. Int. Ed. Engl. 48, 9546–9548 (2009).

    Article  CAS  Google Scholar 

  20. Metzger, U. et al. The structure of dimethylallyl tryptophan synthase reveals a common architecture of aromatic prenyltransferases in fungi and bacteria. Proc. Natl. Acad. Sci. USA 106, 14309–14314 (2009).

    Article  CAS  Google Scholar 

  21. Schowen, K.B., Limbach, H.H., Denisov, G.S. & Schowen, R.L. Hydrogen bonds and proton transfer in general-catalytic transition-state stabilization in enzyme catalysis. Biochim. Biophys. Acta 1458, 43–62 (2000).

    Article  CAS  Google Scholar 

  22. Hammer, S.C., Syrén, P.-O., Seitz, M., Nestl, B.M. & Hauer, B. Squalene hopene cyclases: highly promiscuous and evolvable catalysts for stereoselective C–C and C–X bond formation. Curr. Opin. Chem. Biol. 17, 293–300 (2013).

    Article  CAS  Google Scholar 

  23. Wendt, K.U., Schulz, G.E., Corey, E.J. & Liu, D.R. Enzyme mechanisms for polycyclic triterpene formation. Angew. Chem. Int. Ed. Engl. 39, 2812–2833 (2000).

    Article  CAS  Google Scholar 

  24. Wendt, K.U. Enzyme mechanisms for triterpene cyclization: new pieces of the puzzle. Angew. Chem. Int. Ed. Engl. 44, 3966–3971 (2005).

    Article  CAS  Google Scholar 

  25. Gao, Y., Honzatko, R.B. & Peters, R.J. Terpenoid synthase structures: a so far incomplete view of complex catalysis. Nat. Prod. Rep. 29, 1153–1175 (2012).

    Article  CAS  Google Scholar 

  26. Syrén, P.-O., Hammer, S.C., Claasen, B. & Hauer, B. Entropy is key to the formation of pentacyclic terpenoids by enzyme-catalyzed polycyclization. Angew. Chem. Int. Ed. Engl. 53, 4845–4849 (2014).

    Article  Google Scholar 

  27. Gandour, R.D. On the importance of orientation in general base catalysis by carboxylate. Bioorg. Chem. 10, 169–176 (1981).

    Article  CAS  Google Scholar 

  28. Yonemura, Y., Ohyama, T. & Hoshino, T. Chemo-enzymatic syntheses of drimane-type sesquiterpenes and the fundamental core of hongoquercin meroterpenoid by recombinant squalene-hopene cyclase. Org. Biomol. Chem. 10, 440–446 (2012).

    Article  CAS  Google Scholar 

  29. Hammer, S.C., Dominicus, J.M., Syrén, P.-O., Nestl, B.M. & Hauer, B. Stereoselective Friedel-Crafts alkylation catalyzed by squalene hopene cyclases. Tetrahedron 68, 7624–7629 (2012).

    Article  CAS  Google Scholar 

  30. Seitz, M. et al. Synthesis of heterocyclic terpenoids by promiscuous squalene-hopene cyclases. ChemBioChem 14, 436–439 (2013).

    Article  CAS  Google Scholar 

  31. Breuer, M., Hörster, A. & Hauer, B. Biocatalytic production of Ambroxan. WO Patent 2010/139719 A2 (2010).

  32. Neumann, S. & Simon, H. Purification, partial characterization and substrate specificity of a squalene cyclase from Bacillus acidocaldarius. Biol. Chem. Hoppe Seyler 367, 723–729 (1986).

    Article  CAS  Google Scholar 

  33. Hoshino, T., Kumai, Y., Kudo, I., Nakano, S. & Ohashi, S. Enzymatic cyclization reactions of geraniol, farnesol and geranylgeraniol, and those of truncated squalene analogs having C20 and C25 by recombinant squalene cyclase. Org. Biomol. Chem. 2, 2650–2657 (2004).

    Article  CAS  Google Scholar 

  34. Racolta, S., Juhl, P.B., Sirim, D. & Pleiss, J. The triterpene cyclase protein family: A systematic analysis. Proteins 80, 2009–2019 (2012).

    CAS  PubMed  Google Scholar 

  35. Siedenburg, G. et al. Activation-independent cyclization of monoterpenoids. Appl. Environ. Microbiol. 78, 1055–1062 (2012).

    Article  CAS  Google Scholar 

  36. Siedenburg, G., Breuer, M. & Jendrossek, D. Prokaryotic squalene-hopene cyclases can be converted to citronellal cyclases by single amino acid exchange. Appl. Microbiol. Biotechnol. 97, 1571–1580 (2013).

    Article  CAS  Google Scholar 

  37. Seitz, M. et al. Substrate specificity of a novel squalene-hopene cyclase from Zymomonas mobilis. J. Mol. Catal., B Enzym. 84, 72–77 (2012).

    Article  CAS  Google Scholar 

  38. Reinert, D.J., Balliano, G. & Schulz, G.E. Conversion of squalene to the pentacarbocyclic hopene. Chem. Biol. 11, 121–126 (2004).

    Article  CAS  Google Scholar 

  39. Lenardão, E.J., Botteselle, G.V., de Azambuja, F., Perin, G. & Jacob, R.G. Citronellal as key compound in organic synthesis. Tetrahedron 63, 6671–6712 (2007).

    Article  Google Scholar 

  40. Mäki-Arvela, P. et al. Cyclization of citronellal over zeolites and mesoporous materials for production of isopulegol. J. Catal. 225, 155–169 (2004).

    Article  Google Scholar 

  41. Turner, N.J. Directed evolution drives the next generation of biocatalysts. Nat. Chem. Biol. 5, 567–573 (2009).

    Article  CAS  Google Scholar 

  42. Wendt, K.U., Poralla, K. & Schulz, G.E. Structure and function of a squalene cyclase. Science 277, 1811–1815 (1997).

    Article  CAS  Google Scholar 

  43. Savile, C.K. et al. Biocatalytic asymmetric synthesis of chiral amines from ketones applied to sitagliptin manufacture. Science 329, 305–309 (2010).

    Article  CAS  Google Scholar 

  44. Sandström, A.G., Wikmark, Y., Engström, K., Nyhlén, J. & Bäckvall, J.-E. Combinatorial reshaping of the Candida antarctica lipase A substrate pocket for enantioselectivity using an extremely condensed library. Proc. Natl. Acad. Sci. USA 109, 78–83 (2012).

    Article  Google Scholar 

  45. Jung, S.T., Lauchli, R. & Arnold, F.H. Cytochrome P450: taming a wild type enzyme. Curr. Opin. Biotechnol. 22, 809–817 (2011).

    Article  CAS  Google Scholar 

  46. Babtie, A., Tokuriki, N. & Hollfelder, F. What makes an enzyme promiscuous? Curr. Opin. Chem. Biol. 14, 200–207 (2010).

    Article  CAS  Google Scholar 

  47. Tokuriki, N. & Tawfik, D.S. Protein dynamism and evolvability. Science 324, 203–207 (2009).

    Article  CAS  Google Scholar 

  48. Merlini, V., Luparia, M., Porta, A., Zanoni, G. & Vidari, G. Biomimetic cyclization of geraniol derivatives, a useful tool in the total synthesis of bioactive monocyclic terpenoids. Nat. Prod. Commun. 6, 465–476 (2011).

    CAS  PubMed  Google Scholar 

  49. Brunoldi, E., Luparia, M., Porta, A., Zanoni, G. & Vidari, G. Biomimetic cyclizations of functionalized isoprenoid polyenes: a cornucopia of synthetic opportunities. Curr. Org. Chem. 10, 2259–2282 (2006).

    Article  CAS  Google Scholar 

  50. Rueping, M. & Theissmann, T. Asymmetric Brønsted acid catalysis in aqueous solution. Chem. Sci. 1, 473–476 (2010).

    Article  CAS  Google Scholar 

  51. Surendra, K. & Corey, E.J. Rapid and enantioselective synthetic approaches to germanicol and other pentacyclic triterpenes. J. Am. Chem. Soc. 130, 8865–8869 (2008).

    Article  CAS  Google Scholar 

  52. Tsangarakis, C., Raptis, C., Arkoudis, E. & Stratakis, M. Zeolite NaY-promoted monocyclization of epoxy polyene terpenes: a unique route for the direct synthesis of incompletely cyclized naturally occurring terpenols. Adv. Synth. Catal. 350, 1587–1600 (2008).

    Article  CAS  Google Scholar 

  53. Beszant, S., Giannini, E., Zanoni, G. & Vidari, G. Enantioselective synthesis of both enantiomers of γ-ionone, γ-damascone, karahana lactone and karahana ether. Tetrahedron Asymmetry 13, 1245–1255 (2002).

    Article  CAS  Google Scholar 

  54. Studier, F.W. Protein production by auto-induction in high-density shaking cultures. Protein Expr. Purif. 41, 207–234 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge funding by the European Union's Seventh Framework Programme FP7/2007–2013 under grant agreement no. 289646 as well as a Kekulé scholarship by the Fonds der Chemischen Industrie (to SCH, grant number K 187/01). We thank P.-O. Syrén (KTH Royal Institute of Technology, Stockholm) for stimulating discussions, M. Breuer (BASF SE, Ludwigshafen) for the AacSHC gene, C. Geinitz (University of Stuttgart) for providing the mutants at position F365 and E. Kervio (University of Stuttgart) for help with measuring specific rotations of the products.

Author information

Authors and Affiliations

Authors

Contributions

S.C.H., B.M.N. and B.H. designed the research. S.C.H. and A.M. designed and performed the experiments. J.M.D. synthesized the racemic standards. All authors contributed to the interpretation of the results and the preparation of the manuscript.

Corresponding author

Correspondence to Bernhard Hauer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Notes, Supplementary Results, Supplementary Figures 1–24 and Supplementary Table 1. (PDF 5011 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hammer, S., Marjanovic, A., Dominicus, J. et al. Squalene hopene cyclases are protonases for stereoselective Brønsted acid catalysis. Nat Chem Biol 11, 121–126 (2015). https://doi.org/10.1038/nchembio.1719

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1719

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing