Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

XFELs open a new era in structural chemical biology

X-ray crystallography, the workhorse of structural biology, has been revolutionized by the advent of serial femtosecond crystallography using X-ray free electron lasers. Here, the fast pace and history of discoveries are discussed together with current challenges and the method's great potential to make new structural discoveries, such as the ability to generate molecular movies of biomolecules at work.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic picture of collection of time-resolved data with SFX crystallography.

DEBBIE MAIZELS/NATURE PUBLISHING GROUP

Figure 2: Highlights of structures of membrane proteins solved by SFX.

DEBBIE MAIZELS/NATURE PUBLISHING GROUP

Figure 3: Comparison of time-resolved Laue crystallography and time-resolved SFX crystallography.

DEBBIE MAIZELS/NATURE PUBLISHING GROUP

References

  1. Neutze, R. & Moffat, K. Curr. Opin. Struct. Biol. 22, 651–659 (2012).

    Article  CAS  Google Scholar 

  2. Chapman, H.N. et al. Nat. Phys. 2, 839–843 (2006).

    Article  CAS  Google Scholar 

  3. Chapman, H.N. et al. Nature 470, 73–77 (2011).

    Article  CAS  Google Scholar 

  4. Weierstall, U., Spence, J.C. & Doak, R.B. Rev. Sci. Instrum. 83, 035108 (2012).

    Article  CAS  Google Scholar 

  5. Sayre, D. Acta Crystallogr. 5, 843–843 (1952).

    Article  Google Scholar 

  6. Boutet, S. et al. Science 337, 362–364 (2012).

    Article  CAS  Google Scholar 

  7. Koopmann, R. et al. Nat. Methods 9, 259–262 (2012).

    Article  CAS  Google Scholar 

  8. Redecke, L. et al. Science 339, 227–230 (2013).

    CAS  Google Scholar 

  9. Sawaya, M.R. et al. Proc. Natl. Acad. Sci. USA 111, 12769–12774 (2014).

    Article  CAS  Google Scholar 

  10. Liu, W. et al. Science 342, 1521–1524 (2013).

    Article  CAS  Google Scholar 

  11. Weierstall, U. et al. Nat. Commun. 5, 3309 (2014).

    Article  Google Scholar 

  12. Zhang, H. et al. Cell 161, 833–844 (2015).

    Article  CAS  Google Scholar 

  13. Fenalti, G. et al. Nat. Struct. Mol. Biol. 22, 265–268 (2015).

    Article  CAS  Google Scholar 

  14. Kang, Y. et al. Nature 523, 561–567 (2015).

    Article  CAS  Google Scholar 

  15. Aquila, A. et al. Opt. Express 20, 2706–2716 (2012).

    Article  CAS  Google Scholar 

  16. Kupitz, C. et al. Nature 513, 261–265 (2014).

    Article  CAS  Google Scholar 

  17. Kern, J. et al. Nat. Commun. 5, 4371 (2014).

    Article  CAS  Google Scholar 

  18. Tenboer, J. et al. Science 346, 1242–1246 (2014).

    Article  CAS  Google Scholar 

  19. Kissick, D.J., Wanapun, D. & Simpson, G.J. Annu. Rev. Anal. Chem. 4, 419–437 (2011).

    Article  CAS  Google Scholar 

  20. Hunter, M.S. & Fromme, P. Methods 55, 387–404 (2011).

    Article  CAS  Google Scholar 

  21. Kupitz, C. et al. Phil. Trans. R. Soc. B Bio. Sci. 369, 20130316 (2014).

    Article  Google Scholar 

  22. Abdallah, B.G., Roy-Chowdhury, S., Coe, J., Fromme, P. & Ros, A. Anal. Chem. 87, 4159–4167 (2015).

    Article  CAS  Google Scholar 

  23. Conrad, C.E. et al. IUCrJ 2, 421–430 (2015).

    Article  CAS  Google Scholar 

  24. Nogly, P. et al. IUCrJ 2, 168–176 (2015).

    Article  CAS  Google Scholar 

  25. Hirata, K. et al. Nat. Methods 11, 734–736 (2014).

    Article  CAS  Google Scholar 

  26. Suga, M. et al. Nature 517, 99–103 (2015).

    Article  CAS  Google Scholar 

  27. Fenalti, G. et al. Nature 506, 191–196 (2014).

    Article  CAS  Google Scholar 

  28. Wang, D., Weierstall, U., Pollack, L. & Spence, J. J. Synchrotron Radiat. 21, 1364–1366 (2014).

    Article  CAS  Google Scholar 

  29. Barends, T.R. et al. Nature 505, 244–247 (2014).

    Article  CAS  Google Scholar 

  30. Chen, J.P., Spence, J.C. & Millane, R.P. Acta Crystallogr. A 70, 154–161 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Science and Technology Centers Program of the US National Science Foundation through BioXFEL under agreement no. 1231306 and by the US National Institutes of Health awards 617095583 and U54GM094599. Portions of this research were carried out at the LCLS at the SLAC National Accelerator Laboratory. LCLS is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Stanford University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petra Fromme.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fromme, P. XFELs open a new era in structural chemical biology. Nat Chem Biol 11, 895–899 (2015). https://doi.org/10.1038/nchembio.1968

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1968

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing