Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Progress and challenges for chemical probing of RNA structure inside living cells

Abstract

Proper gene expression is essential for the survival of every cell. Once thought to be a passive transporter of genetic information, RNA has recently emerged as a key player in nearly every pathway in the cell. A full description of its structure is critical to understanding RNA function. Decades of research have focused on utilizing chemical tools to interrogate the structures of RNAs, with recent focus shifting to performing experiments inside living cells. This Review will detail the design and utility of chemical reagents used in RNA structure probing. We also outline how these reagents have been used to gain a deeper understanding of RNA structure in vivo. We review the recent merger of chemical probing with deep sequencing. Finally, we outline some of the hurdles that remain in fully characterizing the structure of RNA inside living cells, and how chemical biology can uniquely tackle such challenges.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The functional and structural complexity of RNA.
Figure 2: Chemical methods to probe RNA structure.
Figure 3: Methods to measure RNA structure inside living cells.
Figure 4: icSHAPE is a novel chemical probing method that permits transcriptome-wide interrogation of RNA structure.
Figure 5: Outstanding challenges for understanding RNA structure inside living cells.

Similar content being viewed by others

References

  1. Xie, X. et al. Systematic discovery of regulatory motifs in human promoters and 3′ UTRs by comparison of several mammals. Nature 434, 338–345 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Badis, G. et al. Diversity and complexity in DNA recognition by transcription factors. Science 324, 1720–1723 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kruger, K. et al. Self-splicing RNA: autoexcision and autocyclization of the ribosomal RNA intervening sequence of Tetrahymena. Cell 31, 147–157 (1982).

    Article  CAS  PubMed  Google Scholar 

  4. Guerrier-Takada, C., Gardiner, K., Marsh, T., Pace, N. & Altman, S. The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme. Cell 35, 849–857 (1983).

    CAS  PubMed  Google Scholar 

  5. Noller, H.F., Hoffarth, V. & Zimniak, L. Unusual resistance of peptidyl transferase to protein extraction procedures. Science 256, 1416–1419 (1992).

    Article  CAS  PubMed  Google Scholar 

  6. Nissen, P., Hansen, J., Ban, N., Moore, P.B. & Steitz, T.A. The structural basis of ribosome activity in peptide bond synthesis. Science 289, 920–930 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Serganov, A. & Nudler, E. A decade of riboswitches. Cell 152, 17–24 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rinn, J.L. et al. Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 129, 1311–1323 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. McHugh, C.A. et al. The Xist lncRNA interacts directly with SHARP to silence transcription through HDAC3. Nature 521, 232–236 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lunde, B.M., Moore, C. & Varani, G. RNA-binding proteins: modular design for efficient function. Nat. Rev. Mol. Cell Biol. 8, 479–490 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Stefl, R., Skrisovska, L. & Allain, F.H. RNA sequence- and shape-dependent recognition by proteins in the ribonucleoprotein particle. EMBO Rep. 6, 33–38 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kedde, M. et al. A Pumilio-induced RNA structure switch in p27–3′ UTR controls miR-221 and miR-222 accessibility. Nat. Cell Biol. 12, 1014–1020 (2010).

    Article  CAS  PubMed  Google Scholar 

  13. Chartrand, P., Meng, X.H., Singer, R.H. & Long, R.M. Structural elements required for the localization of ASH1 mRNA and of a green fluorescent protein reporter particle in vivo. Curr. Biol. 9, 333–336 (1999).

    Article  CAS  PubMed  Google Scholar 

  14. Goodarzi, H. et al. Metastasis-suppressor transcript destabilization through TARBP2 binding of mRNA hairpins. Nature 513, 256–260 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sobczak, K., de Mezer, M., Michlewski, G., Krol, J. & Krzyzosiak, W.J. RNA structure of trinucleotide repeats associated with human neurological diseases. Nucleic Acids Res. 31, 5469–5482 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Duan, R., Sharma, S., Xia, Q., Garber, K. & Jin, P. Towards understanding RNA-mediated neurological disorders. J. Genet. Genomics 41, 473–484 (2014).

    Article  PubMed  Google Scholar 

  17. Houck-Loomis, B. et al. An equilibrium-dependent retroviral mRNA switch regulates translational recoding. Nature 480, 561–564 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kang, M., Eichhorn, C.D. & Feigon, J. Structural determinants for ligand capture by a class II preQ1 riboswitch. Proc. Natl. Acad. Sci. USA 111, E663–E671 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jiang, J. et al. The architecture of Tetrahymena telomerase holoenzyme. Nature 496, 187–192 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Weeks, K.M. Advances in RNA structure analysis by chemical probing. Curr. Opin. Struct. Biol. 20, 295–304 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ziehler, W.A. & Engelke, D.R. Probing RNA structure with chemical reagents and enzymes. Curr. Protoc. Nucleic Acid Chem. Ch. 6, 6.1.1–6.1.21 (2001).

  22. Low, J.T. & Weeks, K.M. SHAPE-directed RNA secondary structure prediction. Methods 52, 150–158 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mathews, D.H. et al. Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA secondary structure. Proc. Natl. Acad. Sci. USA 101, 7287–7292 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lempereur, L. et al. Conformation of yeast 18S rRNA. Direct chemical probing of the 5′ domain in ribosomal subunits and in deproteinized RNA by reverse transcriptase mapping of dimethyl sulfate-accessible. Nucleic Acids Res. 13, 8339–8357 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mortimer, S.A., Johnson, J.S. & Weeks, K.M. Quantitative analysis of RNA solvent accessibility by N-silylation of guanosine. Biochemistry 48, 2109–2114 (2009).

    Article  CAS  PubMed  Google Scholar 

  26. Burgstaller, P., Kochoyan, M. & Famulok, M. Structural probing and damage selection of citrulline- and arginine-specific RNA aptamers identify base positions required for binding. Nucleic Acids Res. 23, 4769–4776 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wilkinson, K.A., Merino, E.J. & Weeks, K.M. RNA SHAPE chemistry reveals nonhierarchical interactions dominate equilibrium structural transitions in tRNAAsp transcripts. J. Am. Chem. Soc. 127, 4659–4667 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Merino, E.J., Wilkinson, K.A., Coughlan, J.L. & Weeks, K.M. RNA structure analysis at single nucleotide resolution by selective 2′-hydroxyl acylation and primer extension (SHAPE). J. Am. Chem. Soc. 127, 4223–4231 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Watts, J.M. et al. Architecture and secondary structure of an entire HIV-1 RNA genome. Nature 460, 711–716 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. McGinnis, J.L., Duncan, C.D. & Weeks, K.M. High-throughput SHAPE and hydroxyl radical analysis of RNA structure and ribonucleoprotein assembly. Methods Enzymol. 468, 67–89 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wan, Y., Qu, K., Ouyang, Z. & Chang, H.Y. Genome-wide mapping of RNA structure using nuclease digestion and high-throughput sequencing. Nat. Protoc. 8, 849–869 (2013).

    Article  CAS  PubMed  Google Scholar 

  32. Peng, Y., Soper, T.J . Ouyang, Z. & Woodson, S.A. RNase footprinting of protein binding sites on an mRNA target of small RNAs. Methods Mol. Biol. 905, 213–224 (2012).

    CAS  PubMed  Google Scholar 

  33. Ingle, S., Azad, R.N., Jain, S.S. & Tullius, T.D. Chemical probing of RNA with the hydroxyl radical at single-atom resolution. Nucleic Acids Res. 42, 12758–12767 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Costa, M. & Monachello, D. Probing RNA folding by hydroxyl radical footprinting. Methods Mol. Biol. 1086, 119–142 (2014).

    Article  CAS  PubMed  Google Scholar 

  35. Ding, F., Lavender, C.A., Weeks, K.M. & Dokholyan, N.V. Three-dimensional RNA structure refinement by hydroxyl radical probing. Nat. Methods 9, 603–608 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Regulski, E.E. & Breaker, R.R. In-line probing analysis of riboswitches. Methods Mol. Biol. 419, 53–67 (2008).

    Article  CAS  PubMed  Google Scholar 

  37. Heilman-Miller, S.L. & Woodson, S.A. Effect of transcription on folding of the Tetrahymena ribozyme. RNA 9, 722–733 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Perdrizet, G.A. II, Artsimovitch, I., Furman, R., Sosnick, T.R. & Pan, T. Transcriptional pausing coordinates folding of the aptamer domain and the expression platform of a riboswitch. Proc. Natl. Acad. Sci. USA 109, 3323–3328 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mahen, E.M., Watson, P.Y., Cottrell, J.W. & Fedor, M.J. mRNA secondary structures fold sequentially but exchange rapidly in vivo. PLoS Biol. 8, e1000307 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Pan, T., Artsimovitch, I., Fang, X.W., Landick, R. & Sosnick, T.R. Folding of a large ribozyme during transcription and the effect of the elongation factor NusA. Proc. Natl. Acad. Sci. USA 96, 9545–9550 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Tyrrell, J., McGinnis, J.L., Weeks, K.M. & Pielak, G.J. The cellular environment stabilizes adenine riboswitch RNA structure. Biochemistry 52, 8777–8785 (2013).

    Article  CAS  PubMed  Google Scholar 

  42. Frieda, K.L. & Block, S.M. Direct observation of cotranscriptional folding in an adenine riboswitch. Science 338, 397–400 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tijerina, P., Mohr, S. & Russell, R. DMS footprinting of structured RNAs and RNA-protein complexes. Nat. Protoc. 2, 2608–2623 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Waldsich, C., Masquida, B., Westhof, E. & Schroeder, R. Monitoring intermediate folding states of the td group I intron in vivo. EMBO J. 21, 5281–5291 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Waldsich, C., Grossberger, R. & Schroeder, R. RNA chaperone StpA loosens interactions of the tertiary structure in the td group I intron in vivo. Genes Dev. 16, 2300–2312 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Swiatkowska, A. et al. Kinetic analysis of pre-ribosome structure in vivo. RNA 18, 2187–2200 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. McGinnis, J.L. & Weeks, K.M. Ribosome RNA assembly intermediates visualized in living cells. Biochemistry 53, 3237–3247 (2014).

    Article  CAS  PubMed  Google Scholar 

  48. McGinnis, J.L. et al. In-cell SHAPE reveals that free 30S ribosome subunits are in the inactive state. Proc. Natl. Acad. Sci. USA 112, 2425–2430 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Spitale, R.C. et al. RNA SHAPE analysis in living cells. Nat. Chem. Biol. 9, 18–20 (2013).

    Article  CAS  PubMed  Google Scholar 

  50. Kwok, C.K., Ding, Y., Tang, Y., Assmann, S.M. & Bevilacqua, P.C. Determination of in vivo RNA structure in low-abundance transcripts. Nat. Commun. 4, 2971 (2013).

    Article  PubMed  CAS  Google Scholar 

  51. Hector, R.D. et al. Snapshots of pre-rRNA structural flexibility reveal eukaryotic 40S assembly dynamics at nucleotide resolution. Nucleic Acids Res. 42, 12138–12154 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Latham, J.A. & Cech, T.R. Defining the inside and outside of a catalytic RNA molecule. Science 245, 276–282 (1989).

    Article  CAS  PubMed  Google Scholar 

  53. Sclavi, B., Woodson, S., Sullivan, M., Chance, M.R. & Brenowitz, M. Time-resolved synchrotron X-ray “footprinting”, a new approach to the study of nucleic acid structure and function: application to protein-DNA interactions and RNA folding. J. Mol. Biol. 266, 144–159 (1997).

    Article  CAS  PubMed  Google Scholar 

  54. Sclavi, B., Sullivan, M., Chance, M.R., Brenowitz, M. & Woodson, S.A. RNA folding at millisecond intervals by synchrotron hydroxyl radical footprinting. Science 279, 1940–1943 (1998).

    Article  CAS  PubMed  Google Scholar 

  55. Adilakshmi, T., Soper, S.F. & Woodson, S.A. Structural analysis of RNA in living cells by in vivo synchrotron X-ray footprinting. Methods Enzymol. 468, 239–258 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kim, H. et al. Protein-guided RNA dynamics during early ribosome assembly. Nature 506, 334–338 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Clatterbuck Soper, S.F., Dator, R.P., Limbach, P.A. & Woodson, S.A. In vivo X-ray footprinting of pre-30S ribosomes reveals chaperone-dependent remodeling of late assembly intermediates. Mol. Cell 52, 506–516 (2013).

    Article  CAS  PubMed  Google Scholar 

  58. Blower, M.D. Molecular insights into intracellular RNA localization. Int. Rev. Cell. Mol. Biol. 302, 1–39 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hogan, D.J., Riordan, D.P., Gerber, A.P., Herschlag, D. & Brown, P.O. Diverse RNA-binding proteins interact with functionally related sets of RNAs, suggesting an extensive regulatory system. PLoS Biol. 6, e255 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Mortimer, S.A., Kidwell, M.A. & Doudna, J.A. Insights into RNA structure and function from genome-wide studies. Nat. Rev. Genet. 15, 469–479 (2014).

    Article  CAS  PubMed  Google Scholar 

  61. Kwok, C.K., Tang, Y., Assmann, S.M. & Bevilacqua, P.C. The RNA structurome: transcriptome-wide structure probing with next-generation sequencing. Trends Biochem. Sci. 40, 221–232 (2015).

    Article  CAS  PubMed  Google Scholar 

  62. Lucks, J.B. et al. Multiplexed RNA structure characterization with selective 2′-hydroxyl acylation analyzed by primer extension sequencing (SHAPE-Seq). Proc. Natl. Acad. Sci. USA 108, 11063–11068 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ding, Y. et al. In vivo genome-wide profiling of RNA secondary structure reveals novel regulatory features. Nature 505, 696–700 (2014).

    Article  CAS  PubMed  Google Scholar 

  64. Rouskin, S., Zubradt, M., Washietl, S., Kellis, M. & Weissman, J.S. Genome-wide probing of RNA structure reveals active unfolding of mRNA structures in vivo. Nature 505, 701–705 (2014).

    Article  CAS  PubMed  Google Scholar 

  65. Spitale, R.C. et al. Structural imprints in vivo decode RNA regulatory mechanisms. Nature 519, 486–490 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Schwartz, S. et al. High-resolution mapping reveals a conserved, widespread, dynamic mRNA methylation program in yeast meiosis. Cell 155, 1409–1421 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Liu, N. et al. N(6)-methyladenosine-dependent RNA structural switches regulate RNA-protein interactions. Nature 518, 560–564 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Zarrinkar, P.P., Wang, J. & Williamson, J.R. Slow folding kinetics of RNase P RNA. RNA 2, 564–573 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Zemora, G. & Waldsich, C. RNA folding in living cells. RNA Biol. 7, 634–641 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Wong, T.N. & Pan, T. RNA folding during transcription: protocols and studies. Methods Enzymol. 468, 167–193 (2009).

    Article  CAS  PubMed  Google Scholar 

  71. Pan, T. & Sosnick, T. RNA folding during transcription. Annu. Rev. Biophys. Biomol. Struct. 35, 161–175 (2006).

    Article  CAS  PubMed  Google Scholar 

  72. Mahen, E.M., Harger, J.W., Calderon, E.M. & Fedor, M.J. Kinetics and thermodynamics make different contributions to RNA folding in vitro and in yeast. Mol. Cell 19, 27–37 (2005).

    Article  CAS  PubMed  Google Scholar 

  73. Danko, C.G. et al. Identification of active transcriptional regulatory elements from GRO-seq data. Nat. Methods 12, 433–438 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Beach, D.L. & Bloom, K. ASH1 mRNA localization in three acts. Mol. Biol. Cell 12, 2567–2577 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Lécuyer, E. et al. Global analysis of mRNA localization reveals a prominent role in organizing cellular architecture and function. Cell 131, 174–187 (2007).

    Article  PubMed  CAS  Google Scholar 

  76. Riley, K.J., Yario, T.A. & Steitz, J.A. Association of Argonaute proteins and microRNAs can occur after cell lysis. RNA 18, 1581–1585 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Mili, S. & Steitz, J.A. Evidence for reassociation of RNA-binding proteins after cell lysis: implications for the interpretation of immunoprecipitation analyses. RNA 10, 1692–1694 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Mayerle, M. & Woodson, S.A. Specific contacts between protein S4 and ribosomal RNA are required at multiple stages of ribosome assembly. RNA 19, 574–585 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Panja, S., Schu, D.J. & Woodson, S.A. Conserved arginines on the rim of Hfq catalyze base pair formation and exchange. Nucleic Acids Res. 41, 7536–7546 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Lucas, C.H., Calvez, M., Babu, R. & Brown, A. Altered subcellular localization of the NeuN/Rbfox3 RNA splicing factor in HIV-associated neurocognitive disorders (HAND). Neurosci. Lett. 558, 97–102 (2014).

    Article  CAS  PubMed  Google Scholar 

  81. Kudla, G., Granneman, S., Hahn, D., Beggs, J.D. & Tollervey, D. Cross-linking, ligation, and sequencing of hybrids reveals RNA-RNA interactions in yeast. Proc. Natl. Acad. Sci. USA 108, 10010–10015 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Belton, J.M. et al. Hi-C: a comprehensive technique to capture the conformation of genomes. Methods 58, 268–276 (2012).

    Article  CAS  PubMed  Google Scholar 

  83. Yaffe, E. & Tanay, A. Probabilistic modeling of Hi-C contact maps eliminates systematic biases to characterize global chromosomal architecture. Nat. Genet. 43, 1059–1065 (2011).

    Article  CAS  PubMed  Google Scholar 

  84. Sugimoto, Y. et al. hiCLIP reveals the in vivo atlas of mRNA secondary structures recognized by Staufen 1. Nature 519, 491–494 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Mathews, D.H. RNA secondary structure analysis using RNAstructure. Curr. Protoc. Bioinformatics 46, 12.6.1–12.6.25 (2014).

    Google Scholar 

  86. Markham, N.R. & Zuker, M. UNAFold: software for nucleic acid folding and hybridization. Methods Mol. Biol. 453, 3–31 (2008).

    Article  CAS  PubMed  Google Scholar 

  87. Gruber, A.R., Lorenz, R., Bernhart, S.H., Neubock, R. & Hofacker, I.L. The Vienna RNA websuite. Nucleic Acids Res. 36, W70–W74 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Deigan, K.E., Li, T.W., Mathews, D.H. & Weeks, K.M. Accurate SHAPE-directed RNA structure determination. Proc. Natl. Acad. Sci. USA 106, 97–102 (2009).

    Article  CAS  PubMed  Google Scholar 

  89. Washietl, S. et al. Computational analysis of noncoding RNAs. Wiley Interdiscip Rev. RNA 3, 759–778 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Andronescu, M., Condon, A., Hoos, H.H., Mathews, D.H. & Murphy, K.P. Computational approaches for RNA energy parameter estimation. RNA 16, 2304–2318 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Ouyang, Z., Snyder, M.P. & Chang, H.Y. SeqFold: genome-scale reconstruction of RNA secondary structure integrating high-throughput sequencing data. Genome Res. 23, 377–387 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Tang, Y. et al. StructureFold: genome-wide RNA secondary structure mapping and reconstruction in vivo. Bioinformatics 31, 2668–2675 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Corley, M., Solem, A., Qu, K., Chang, H.Y. & Laederach, A. Detecting riboSNitches with RNA folding algorithms: a genome-wide benchmark. Nucleic Acids Res. 43, 1859–1868 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank members of the Spitale laboratory and R. Flynn for helpful discussions. We also thank professors S. Woodson and A. Laederach for critical reading of the manuscript. The University of California, Irvine and the US National Institutes of Health Director's New Innovator Award (grant 1DP2GM119164-01) support RNA research in the Spitale lab.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert C Spitale.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kubota, M., Tran, C. & Spitale, R. Progress and challenges for chemical probing of RNA structure inside living cells. Nat Chem Biol 11, 933–941 (2015). https://doi.org/10.1038/nchembio.1958

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1958

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing