Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural basis for sialic acid–mediated self-recognition by complement factor H

Abstract

The serum protein complement factor H (FH) ensures downregulation of the complement alternative pathway, a branch of innate immunity, upon interaction with specific glycans on host cell surfaces. Using ligand-based NMR, we screened a comprehensive set of sialylated glycans for binding to FH and solved the crystal structure of a ternary complex formed by the two C-terminal domains of FH, a sialylated trisaccharide and the complement C3b thioester–containing domain. Key residues in the sialic acid binding site are conserved from mice to men, and residues linked to atypical hemolytic uremic syndrome cluster within this binding site, suggesting a possible role for sialic acid as a host marker also in other mammals and a critical role in human renal complement homeostasis. Unexpectedly, the FH sialic acid binding site is structurally homologous to the binding sites of two evolutionarily unrelated proteins. The crystal structure also advances our understanding of bacterial immune evasion strategies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Chemical formulas of glycans tested in the STD NMR experiments with full-length FH.
Figure 2: FH binds α2-3 linked sialic acid glycans in its C-terminal domain.
Figure 3: The sialic acid FH binding site is a hot spot for aHUS mutations.
Figure 4: Orientation of the ternary host recognition complex on cellular surfaces.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Ricklin, D., Hajishengallis, G., Yang, K. & Lambris, J.D. Complement: a key system for immune surveillance and homeostasis. Nat. Immunol. 11, 785–797 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Zipfel, P.F. Complement and immune defense: from innate immunity to human diseases. Immunol. Lett. 126, 1–7 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. Ram, S., Lewis, L.A. & Rice, P.A. Infections of people with complement deficiencies and patients who have undergone splenectomy. Clin. Microbiol. Rev. 23, 740–780 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Blue, C.E., Spiller, O.B. & Blackbourn, D.J. The relevance of complement to virus biology. Virology 319, 176–184 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Kim, D.D. & Song, W.-C. Membrane complement regulatory proteins. Clin. Immunol. 118, 127–136 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Lambris, J.D., Ricklin, D. & Geisbrecht, B.V. Complement evasion by human pathogens. Nat. Rev. Microbiol. 6, 132–142 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Schmidt, C.Q. et al. The central portion of factor H (modules 10–15) is compact and contains a structurally deviant CCP module. J. Mol. Biol. 395, 105–122 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Janssen, B.J.C., Christodoulidou, A., McCarthy, A., Lambris, J.D. & Gros, P. Structure of C3b reveals conformational changes that underlie complement activity. Nature 444, 213–216 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Ferreira, V.P. & Pangburn, M.K. Factor H mediated cell surface protection from complement is critical for the survival of PNH erythrocytes. Blood 110, 2190–2192 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Renner, B. et al. The complement inhibitors Crry and factor H are critical for preventing autologous complement activation on renal tubular epithelial cells. J. Immunol. 185, 3086–3094 (2010).

    Article  CAS  PubMed  Google Scholar 

  11. Fearon, D.T. Regulation by membrane sialic acid of β1H-dependent decay-dissociation of amplification C3 convertase of the alternative complement pathway. Proc. Natl. Acad. Sci. USA 75, 1971–1975 (1978).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pangburn, M.K. & Müller-Eberhard, H.J. Complement C3 convertase: cell surface restriction of β1H control and generation of restriction on neuraminidase-treated cells. Proc. Natl. Acad. Sci. USA 75, 2416–2420 (1978).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ram, S. et al. A novel sialic acid binding site on factor H mediates serum resistance of sialylated Neisseria gonorrhoeae. J. Exp. Med. 187, 743–752 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pangburn, M.K., Ferreira, V.P. & Cortes, C. Discrimination between host and pathogens by the complement system. Vaccine 26, I15–I21 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Clark, S.J. et al. Impaired binding of the age-related macular degeneration-associated complement factor H 402H allotype to Bruch's membrane in human retina. J. Biol. Chem. 285, 30192–30202 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Prosser, B.E. et al. Structural basis for complement factor H linked age-related macular degeneration. J. Exp. Med. 204, 2277–2283 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Clark, S.J. et al. Tissue-specific host recognition by complement factor H is mediated by differential activities of its glycosaminoglycan-binding regions. J. Immunol. 190, 2049–2057 (2013).

    Article  CAS  PubMed  Google Scholar 

  18. Paulson, J.C., Macauley, M.S. & Kawasaki, N. Siglecs as sensors of self in innate and adaptive immune responses. Ann. NY Acad. Sci. 1253, 37–48 (2012).

    CAS  PubMed  Google Scholar 

  19. Crespo, H.J., Lau, J.T.Y. & Videira, P.A. Dendritic cells: a spot on sialic acid. Front. Immunol. 4, 491 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Meri, S. & Pangburn, M.K. Discrimination between activators and nonactivators of the alternative pathway of complement: regulation via a sialic acid/polyanion binding site on factor H. Proc. Natl. Acad. Sci. USA 87, 3982–3986 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Meri, S. & Pangburn, M.K. Regulation of alternative pathway complement activation by glycosaminoglycans: specificity of the polyanion binding site on factor H. Biochem. Biophys. Res. Commun. 198, 52–59 (1994).

    Article  CAS  PubMed  Google Scholar 

  22. Morgan, H.P. et al. Structural basis for engagement by complement factor H of C3b on a self surface. Nat. Struct. Mol. Biol. 18, 463–470 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kajander, T. et al. Dual interaction of factor H with C3d and glycosaminoglycans in host-nonhost discrimination by complement. Proc. Natl. Acad. Sci. USA 108, 2897–2902 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Varki, A. et al. Essentials of Glycobiology (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 2009).

  25. Mayer, M. & Meyer, B. Group epitope mapping by saturation transfer difference NMR to identify segments of a ligand in direct contact with a protein receptor. J. Am. Chem. Soc. 123, 6108–6117 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Williamson, M.P. Applications of the NOE in molecular biology. Annu. Rep. NMR. Spectrosc. 65, 77–109 (2009).

    Article  CAS  Google Scholar 

  27. Claasen, B., Axmann, M., Meinecke, R. & Meyer, B. Direct observation of ligand binding to membrane proteins in living cells by a saturation transfer double difference (STDD) NMR spectroscopy method shows a significantly higher affinity of integrin α(IIb)β3 in native platelets than in liposomes. J. Am. Chem. Soc. 127, 916–919 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Ferreira, V.P., Herbert, A.P., Hocking, H.G., Barlow, P.N. & Pangburn, M.K. Critical role of the C-terminal domains of factor H in regulating complement activation at cell surfaces. J. Immunol. 177, 6308–6316 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Kavanagh, D., Goodship, T.H. & Richards, A. Atypical hemolytic uremic syndrome. Semin. Nephrol. 33, 508–530 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Herbert, A.P., Uhrín, D., Lyon, M., Pangburn, M.K. & Barlow, P.N. Disease-associated sequence variations congregate in a polyanion recognition patch on human factor H revealed in three-dimensional structure. J. Biol. Chem. 281, 16512–16520 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Spitzer, D., Mitchell, L.M., Atkinson, J.P. & Hourcade, D.E. Properdin can initiate complement activation by binding specific target surfaces and providing a platform for de novo convertase assembly. J. Immunol. 179, 2600–2608 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Kemper, C., Atkinson, J.P. & Hourcade, D.E. Properdin: emerging roles of a pattern-recognition molecule. Annu. Rev. Immunol. 28, 131–155 (2010).

    Article  CAS  PubMed  Google Scholar 

  33. Varki, A. & Kornfeld, S. An autosomal dominant gene regulates the extent of 9-O-acetylation of murine erythrocyte sialic acids. A probable explanation for the variation in capacity to activate the human alternate complement pathway. J. Exp. Med. 152, 532–544 (1980).

    Article  CAS  PubMed  Google Scholar 

  34. Michalek, M.T., Mold, C. & Bremer, E.G. Inhibition of the alternative pathway of human complement by structural analogues of sialic acid. J. Immunol. 140, 1588–1594 (1988).

    CAS  PubMed  Google Scholar 

  35. Okada, N., Yasuda, T. & Okada, H. Restriction of alternative complement pathway activation by sialosylglycolipids. Nature 299, 261–263 (1982).

    Article  CAS  PubMed  Google Scholar 

  36. Ferreira, V.P. et al. The binding of factor H to a complex of physiological polyanions and C3b on cells is impaired in atypical hemolytic uremic syndrome. J. Immunol. 182, 7009–7018 (2009).

    Article  CAS  PubMed  Google Scholar 

  37. Herbert, A.P. et al. Structural and functional characterization of the product of disease-related factor H gene conversion. Biochemistry 51, 1874–1884 (2012).

    Article  CAS  PubMed  Google Scholar 

  38. Maga, T.K., Nishimura, C.J., Weaver, A.E., Frees, K.L. & Smith, R.J.H. Mutations in alternative pathway complement proteins in American patients with atypical hemolytic uremic syndrome. Hum. Mutat. 31, E1445–E1460 (2010).

    Article  CAS  PubMed  Google Scholar 

  39. Schmidt, C.Q. et al. Rational engineering of a minimized immune inhibitor with unique triple-targeting properties. J. Immunol. 190, 5712–5721 (2013).

    Article  CAS  PubMed  Google Scholar 

  40. Galeano, B. et al. Mutation in the key enzyme of sialic acid biosynthesis causes severe glomerular proteinuria and is rescued by N-acetylmannosamine. J. Clin. Invest. 117, 1585–1594 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Mulloy, B., Forster, M.J., Jones, C. & Davies, D.B. N.m.r. and molecular-modelling studies of the solution conformation of heparin. Biochem. J. 293, 849–858 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Klein, P.J. et al. Thomsen Friedenreich antigen in hæmolytic-uræmic syndrome. Lancet 2, 1024–1025 (1977).

    Article  CAS  PubMed  Google Scholar 

  43. Copelovitch, L. & Kaplan, B.S. Streptococcus pneumoniae–associated hemolytic uremic syndrome. Pediatr. Nephrol. 23, 1951–1956 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Bhattacharjee, A. et al. Structural basis for complement evasion by Lyme disease pathogen Borrelia burgdorferi. J. Biol. Chem. 288, 18685–18695 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Pickering, M.C. et al. Spontaneous hemolytic uremic syndrome triggered by complement factor H lacking surface recognition domains. J. Exp. Med. 204, 1249–1256 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Skerka, C., Chen, Q., Fremeaux-Bacchi, V. & Roumenina, L.T. Complement factor H related proteins (CFHRs). Mol. Immunol. 56, 170–180 (2013).

    Article  CAS  PubMed  Google Scholar 

  47. Zhuravleva, M.A., Trandem, K. & Sun, P.D. Structural implications of Siglec-5–mediated sialoglycan recognition. J. Mol. Biol. 375, 437–447 (2008).

    Article  CAS  PubMed  Google Scholar 

  48. Rademacher, C. et al. A Siglec-like sialic-acid–binding motif revealed in an adenovirus capsid protein. Glycobiology 22, 1086–1091 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Seiradake, E. et al. The cell adhesion molecule 'CAR' and sialic acid on human erythrocytes influence adenovirus in vivo biodistribution. PLoS Pathog. 5, e1000277 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Nicholson, J.K., Foxall, P.J., Spraul, M., Farrant, R.D. & Lindon, J.C. 750 MHz 1H and 1H–13C NMR spectroscopy of human blood plasma. Anal. Chem. 67, 793–811 (1995).

    Article  CAS  PubMed  Google Scholar 

  51. Kabsch, W. Integration, scaling, space-group assignment and post-refinement. Acta Crystallogr. D Biol. Crystallogr. 66, 133–144 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240–255 (1997).

    Article  CAS  PubMed  Google Scholar 

  53. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    PubMed  Google Scholar 

  54. Adams, P.D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Davis, I.W. et al. MolProbity: all-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res. 35, W375–W383 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Frank, M., Lütteke, T. & von der Lieth, C.-W. GlycoMapsDB: a database of the accessible conformational space of glycosidic linkages. Nucleic Acids Res. 35, 287–290 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Papadopoulos, J.S. & Agarwala, R. COBALT: constraint-based alignment tool for multiple protein sequences. Bioinformatics 23, 1073–1079 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank R. Sprangers (Max Planck Institute for Development Biology, Tübingen, Germany), for assistance with NMR spectra collection, the SLS beamline staff (Paul Scherrer Institute, Villigen, Switzerland) for assistance with crystallographic data collection and H. Hengel (University Hospital Tübingen) for performing venipuncture and assistance with serum preparation. Funding was provided by the University of Tübingen Program for the Promotion of Junior Researchers and the University Hospital Tübingen Fortüne program (2186-0-0 to B.S.B.). D.K. is a Wellcome Trust intermediate clinical fellow.

Author information

Authors and Affiliations

Authors

Contributions

B.S.B. designed, conducted and analyzed experiments. J.P.H. advised crystallization, and D.U. advised NMR experiments. J.P.H., A.P.H., D.K. and D.U. provided proteins. D.U. provided glycans. T.S. supervised the project and provided vital reagents. All authors discussed findings. B.S.B. and T.S. wrote the manuscript.

Corresponding author

Correspondence to Bärbel S Blaum.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Figures 1–6 and Supplementary Tables 1 and 2. (PDF 2385 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blaum, B., Hannan, J., Herbert, A. et al. Structural basis for sialic acid–mediated self-recognition by complement factor H. Nat Chem Biol 11, 77–82 (2015). https://doi.org/10.1038/nchembio.1696

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1696

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing