Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Non-plastidic, tyrosine-insensitive prephenate dehydrogenases from legumes

Abstract

L-Tyrosine (Tyr) and its plant-derived natural products are essential in both plants and humans. In plants, Tyr is generally assumed to be synthesized in the plastids via arogenate dehydrogenase (TyrAa, also known also ADH), which is strictly inhibited by L-Tyr. Using phylogenetic and expression analyses, together with recombinant enzyme and endogenous activity assays, we identified prephenate dehydrogenases (TyrAps, also known as PDHs) from two legumes, Glycine max (soybean) and Medicago truncatula. The identified PDHs were phylogenetically distinct from canonical plant ADH enzymes, preferred prephenate to arogenate substrate, localized outside of the plastids and were not inhibited by L-Tyr. The results provide molecular evidence for the diversification of primary metabolic Tyr pathway via an alternative cytosolic PDH pathway in plants.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Proposed Tyr pathways in plants.
Figure 2: HPLC detection of PDH activity from plant tissues and chromatographic separation of PDH and ADH.
Figure 3: Phylogeny and enzymatic activity of candidate legume PDHs.
Figure 4: Localization of legume PDH enzymes and PDH and CM activity.
Figure 5: Tyr insensitivity of PDHs and proposed alternative Tyr biosynthetic routes in legumes.

Similar content being viewed by others

Accession codes

Primary accessions

NCBI Reference Sequence

Referenced accessions

NCBI Reference Sequence

References

  1. Millner, P.A. & Barber, J. Plastoquinone as a mobile redox carrier in the photosynthetic membrane. FEBS Lett. 169, 1–6 (1984).

    Article  CAS  Google Scholar 

  2. Strack, D., Vogt, T. & Schliemann, W. Recent advances in betalain research. Phytochemistry 62, 247–269 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Møller, B.L. Functional diversifications of cyanogenic glucosides. Curr. Opin. Plant Biol. 13, 338–347 (2010).

    Article  CAS  PubMed  Google Scholar 

  4. Kutchan, T.M. Alkaloid biosynthesis—the basis for metabolic engineering of medicinal plants. Plant Cell 7, 1059–1070 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Rösler, J., Krekel, F., Amrhein, N. & Schmid, J. Maize phenylalanine ammonia-lyase has tyrosine ammonia-lyase activity. Plant Physiol. 113, 175–179 (1997).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Higuchi, T., Ito, Y. & Kawamura, I. p-Hydroxyphenylpropane component of grass lignin and role of tyrosine-ammonia lyase in its formation. Phytochemistry 6, 875–881 (1967).

    Article  CAS  Google Scholar 

  7. Bramley, P.M. et al. Vitamin E. J. Sci. Food Agric. 80, 913–938 (2000).

    Article  CAS  Google Scholar 

  8. De Luca, V., Salim, V., Atsumi, S.M. & Yu, F. Mining the biodiversity of plants: a revolution in the making. Science 336, 1658–1661 (2012).

    Article  CAS  PubMed  Google Scholar 

  9. Tzin, V. & Galili, G. New insights into the shikimate and aromatic amino acids biosynthesis pathways in plants. Mol. Plant 3, 956–972 (2010).

    Article  CAS  PubMed  Google Scholar 

  10. Maeda, H. & Dudareva, N. The shikimate pathway and aromatic amino acid biosynthesis in plants. Annu. Rev. Plant Biol. 63, 73–105 (2012).

    Article  CAS  PubMed  Google Scholar 

  11. Siehl, D. in Plant Amino Acids: Biochemistry and Biotechnology (ed. Singh, B.) 171–204 (CRC Press, New York, 1999).

  12. Rippert, P., Puyaubert, J., Grisollet, D., Derrier, L. & Matringe, M. Tyrosine and phenylalanine are synthesized within the plastids in Arabidopsis. Plant Physiol. 149, 1251–1260 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rippert, P. & Matringe, M. Molecular and biochemical characterization of an Arabidopsis thaliana arogenate dehydrogenase with two highly similar and active protein domains. Plant Mol. Biol. 48, 361–368 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Rippert, P. & Matringe, M. Purification and kinetic analysis of the two recombinant arogenate dehydrogenase isoforms of Arabidopsis thaliana. Eur. J. Biochem. 269, 4753–4761 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Dal Cin, V. et al. Identification of genes in the phenylalanine metabolic pathway by ectopic expression of a MYB transcription factor in tomato fruit. Plant Cell 23, 2738–2753 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Connelly, J.A. & Conn, E.E. Tyrosine biosynthesis in Sorghum bicolor: isolation and regulatory properties of arogenate dehydrogenase. Z Naturforsch C 41, 69–78 (1986).

    Article  CAS  PubMed  Google Scholar 

  17. Gaines, C.G., Byng, G.S., Whitaker, R.J. & Jensen, R.A. l-Tyrosine regulation and biosynthesis via arogenate dehydrogenase in suspension-cultured cells of Nicotiana silvestris Speg. et Comes. Planta 156, 233–240 (1982).

    Article  CAS  PubMed  Google Scholar 

  18. Rubin, J.L. & Jensen, R.A. Enzymology of l-tyrosine biosynthesis in mung bean (Vigna radiata [L.] Wilczek). Plant Physiol. 64, 727–734 (1979).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Byng, G., Whitaker, R., Flick, C. & Jensen, R.A. Enzymology of l-tyrosine biosynthesis in corn (Zea mays). Phytochemistry 20, 1289–1292 (1981).

    Article  CAS  Google Scholar 

  20. Hudson, G.S., Wong, V. & Davidson, B. Chorismate mutase/prephenate dehydrogenase from Escherichia coli K12: purification, characterization, and identification of a reactive cysteine. Biochemistry 23, 6240–6249 (1984).

    Article  CAS  PubMed  Google Scholar 

  21. Fischer, R. & Jensen, R.A. Prephenate dehydrogenase (monofunctional). Methods Enzymol. 142, 503–507 (1987).

    Article  CAS  PubMed  Google Scholar 

  22. Xia, T.H. & Jensen, R. A single clycohexadienyl dehydrogenase specifies the prephenate dehydrogenase and arogenate dehydrogenase components of the dual pathways to l-tyrosine in Pseudomonas aeruginosa. J. Biol. Chem. 265, 20033–20036 (1990).

    CAS  PubMed  Google Scholar 

  23. Xu, S., Yang, Y., Jin, R., Zhang, M. & Wang, H. Purification and characterization of a functionally active Mycobacterium tuberculosis prephenate dehydrogenase. Protein Expr. Purif. 49, 151–158 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Maeda, H. et al. RNAi suppression of arogenate dehydratase1 reveals that phenylalanine is synthesized predominantly via the arogenate pathway in Petunia petals. Plant Cell 22, 832–849 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Secor, J. Inhibition of barnyardgrass 4-hydroxyphenylpyruvate dioxygenase by sulcotrione. Plant Physiol. 106, 1429–1433 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bonvin, J., Aponte, R. & Marcantonio, M. Biochemical characterization of prephenate dehydrogenase from the hyperthermophilic bacterium Aquifex aeolicus. Protein Sci. 15, 1417–1432 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Maeda, H., Yoo, H. & Dudareva, N. Prephenate aminotransferase directs plant phenylalanine biosynthesis via arogenate. Nat. Chem. Biol. 7, 19–21 (2011).

    Article  CAS  PubMed  Google Scholar 

  28. Corea, O.R., Bedgar, D.L., Davin, L.B. & Lewis, N.G. The arogenate dehydratase gene family: towards understanding differential regulation of carbon flux through phenylalanine into primary versus secondary metabolic pathways. Phytochemistry 82, 22–37 (2012).

    Article  CAS  PubMed  Google Scholar 

  29. Bickel, H., Palme, L. & Schultz, G. Incorporation of shikimate and other precursors into aromatic amino acids and prenylquinones of isolated spinach chloroplasts. Phytochemistry 17, 119–124 (1978).

    Article  CAS  Google Scholar 

  30. Westfall, C.S., Xu, A. & Jez, J.M. Structural evolution of differential amino acid effector regulation in plant chorismate mutases. J. Biol. Chem. 289, 28619–28628 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Colquhoun, T.A. et al. A petunia chorismate mutase specialized for the production of floral volatiles. Plant J. 61, 145–155 (2010).

    Article  CAS  PubMed  Google Scholar 

  32. Eberhard, J. et al. Cytosolic and plastidic chorismate mutase isozymes from Arabidopsis thaliana: molecular characterization and enzymatic properties. Plant J. 10, 815–821 (1996).

    Article  CAS  PubMed  Google Scholar 

  33. d'Amato, T.A., Ganson, R.J., Gaines, C. & Jensen, R. Subcellular localization of chorismate-mutase isoenzymes in protoplasts from mesophyll and suspension-cultured cells of Nicotiana silvestris. Planta 162, 104–108 (1984).

    Article  CAS  PubMed  Google Scholar 

  34. Prabhakar, V. et al. Phosphoenolpyruvate provision to plastids is essential for gametophyte and sporophyte development in Arabidopsis thaliana. Plant Cell 22, 2594–2617 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lütke-Eversloh, T. & Stephanopoulos, G. Feedback inhibition of chorismate mutase/prephenate dehydrogenase (TyrA) of Escherichia coli: generation and characterization of tyrosine-insensitive mutants. Appl. Environ. Microbiol. 71, 7224–7228 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sun, W. et al. The crystal structure of Aquifex aeolicus prephenate dehydrogenase reveals the mode of tyrosine inhibition. J. Biol. Chem. 284, 13223–13232 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chiu, H.J. et al. The structure of Haemophilus influenzae prephenate dehydrogenase suggests unique features of bifunctional TyrA enzymes. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 66, 1317–1325 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sun, W., Singh, S., Zhang, R., Turnbull, J. & Christendat, D. Crystal structure of prephenate dehydrogenase from Aquifex aeolicus insights into the catalytic mechanism. J. Biol. Chem. 281, 12919–12928 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Legrand, P. et al. Biochemical characterization and crystal structure of Synechocystis arogenate dehydrogenase provide insights into catalytic reaction. Structure 14, 767–776 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Christendat, D., Saridakis, V. & Turnbull, J. Use of site-directed mutagenesis to identify residues specific for each reaction catalyzed by chorismate mutase-prephenate dehydrogenase from Escherichia coli. Biochemistry 37, 15703–15712 (1998).

    Article  CAS  PubMed  Google Scholar 

  41. Turnbull, J., Morrison, J.F. & Cleland, W. Kinetic studies on chorismate mutase-prephenate dehydrogenase from Escherichia coli: models for the feedback inhibition of prephenate dehydrogenase by l-tyrosine. Biochemistry 30, 7783–7788 (1991).

    Article  CAS  PubMed  Google Scholar 

  42. Riewe, D. et al. A tyrosine aminotransferase involved in tocopherol synthesis in Arabidopsis. Plant J. 71, 850–859 (2012).

    Article  CAS  PubMed  Google Scholar 

  43. Lee, E.-J. & Facchini, P.J. Tyrosine aminotransferase contributes to benzylisoquinoline alkaloid biosynthesis in opium poppy. Plant Physiol. 157, 1067–1078 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yoo, H. et al. An alternative pathway contributes to phenylalanine biosynthesis in plants via a cytosolic tyrosine:phenylpyruvate aminotransferase. Nat. Commun. 4, 2833 (2013).

    Article  CAS  PubMed  Google Scholar 

  45. Bonawitz, N.D. & Chapple, C. The genetics of lignin biosynthesis: connecting genotype to phenotype. Annu. Rev. Genet. 44, 337–363 (2010).

    Article  CAS  PubMed  Google Scholar 

  46. Weng, J.-K., Philippe, R.N. & Noel, J.P. The rise of chemodiversity in plants. Science 336, 1667–1670 (2012).

    Article  CAS  PubMed  Google Scholar 

  47. Pichersky, E. & Lewinsohn, E. Convergent evolution in plant specialized metabolism. Annu. Rev. Plant Biol. 62, 549–566 (2011).

    Article  CAS  PubMed  Google Scholar 

  48. Karunanandaa, B. et al. Metabolically engineered oilseed crops with enhanced seed tocopherol. Metab. Eng. 7, 384–400 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Rippert, P., Scimemi, C., Dubald, M. & Matringe, M. Engineering plant shikimate pathway for production of tocotrienol and improving herbicide resistance. Plant Physiol. 134, 92–100 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhang, C. et al. Genetic and biochemical basis for alternative routes of tocotrienol biosynthesis for enhanced vitamin E antioxidant production. Plant J. 73, 628–639 (2013).

    Article  CAS  PubMed  Google Scholar 

  51. Edgar, R.C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Whelan, S. & Goldman, N. A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Mol. Biol. Evol. 18, 691–699 (2001).

    Article  CAS  PubMed  Google Scholar 

  53. Saitou, N. & Nei, M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425 (1987).

    CAS  PubMed  Google Scholar 

  54. Gilchrist, D. & Connelly, J. Chorismate mutase from mung bean and sorghum. Methods Enzymol. 142, 450–463 (1987).

    Article  CAS  Google Scholar 

  55. Schuller, K.A., Plaxton, W.C. & Turpin, D.H. Regulation of phosphoenolpyruvate carboxylase from the green alga Selenastrum minutum. Plant Physiol. 93, 1303–1311 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kang, F. & Rawsthorne, S. Starch and fatty acid synthesis in plastids from developing embryos of oilseed rape (Brassica napus L.). Plant J. 6, 795–805 (1994).

    Article  CAS  Google Scholar 

  57. Bionda, T. et al. Chloroplast import signals: the length requirement for translocation in vitro and in vivo. J. Mol. Biol. 402, 510–523 (2010).

    Article  CAS  PubMed  Google Scholar 

  58. Wu, F.-H. et al. Tape-Arabidopsis Sandwich—a simpler Arabidopsis protoplast isolation method. Plant Methods 5, 5–16 (2009).

    Article  CAS  Google Scholar 

  59. Yoo, S.-D., Cho, Y.-H. & Sheen, J. Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat. Protoc. 2, 1565–5172 (2007).

    Article  CAS  PubMed  Google Scholar 

  60. Hajdukiewicz, P., Svab, Z. & Maliga, P. The small, versatile pPZP family of Agrobacterium binary vectors for plant transformation. Plant Mol. Biol. 25, 989–994 (1994).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank R. Singhal (University of Wisconsin) for help with protoplast isolation; S. Swanson, A. Chanoca and R. Buono (University of Wisconsin) for assistance with confocal imaging and analysis; C. Grau (University of Wisconsin) for soybean Williams82 seeds; J.-M. Ané (University of Wisconsin) for M. truncatula tissues and seeds; and F.R. Márquez (Universidad Andrés Bello) for the 35S-pPZP211 vector. The confocal imaging was performed at the Newcomb Imaging Center, Department of Botany, University of Wisconsin-Madison. This work was supported by grant IOS-1354971 from the US National Science Foundation to H.A.M., the Fritz Went Undergraduate Fellowship to S.C. and the start-up funds from the Graduate School, the College of Letters & Science, and the Department of Botany, University of Wisconsin-Madison to H.A.M.

Author information

Authors and Affiliations

Authors

Contributions

C.A.S. and H.A.M. designed research, and C.A.S. performed phylogenetic analyses, enzyme purification and characterization, localization studies and inhibition assays. S.C. performed gene expression analyses, enzyme purification and enzymatic assays. D.L.S. performed chromatographic separations and enzymatic assays, and H.A.M. performed localization studies and enzymatic assays. C.A.S., S.C., D.L.S. and H.A.M. analyzed data, C.A.S. and H.A.M. wrote the manuscript. All authors read and edited the manuscript.

Corresponding author

Correspondence to Hiroshi A Maeda.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Tables 1–3 and Supplementary Figures 1–13. (PDF 3957 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schenck, C., Chen, S., Siehl, D. et al. Non-plastidic, tyrosine-insensitive prephenate dehydrogenases from legumes. Nat Chem Biol 11, 52–57 (2015). https://doi.org/10.1038/nchembio.1693

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1693

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing