Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

LRAT-specific domain facilitates vitamin A metabolism by domain swapping in HRASLS3

Abstract

Cellular uptake of vitamin A, production of visual chromophore and triglyceride homeostasis in adipocytes depend on two representatives of the vertebrate N1pC/P60 protein family, lecithin:retinol acyltransferase (LRAT) and HRAS-like tumor suppressor 3 (HRASLS3). Both proteins function as lipid-metabolizing enzymes but differ in their substrate preferences and dominant catalytic activity. The mechanism of this catalytic diversity is not understood. Here, by using a gain-of-function approach, we identified a specific sequence responsible for the substrate specificity of N1pC/P60 proteins. A 2.2-Å crystal structure of the HRASLS3–LRAT chimeric enzyme in a thioester catalytic intermediate state revealed a major structural rearrangement accompanied by three-dimensional domain swapping dimerization not observed in native HRASLS proteins. Structural changes affecting the active site environment contributed to slower hydrolysis of the catalytic intermediate, supporting efficient acyl transfer. These findings reveal structural adaptation that facilitates selective catalysis and mechanism responsible for diverse substrate specificity within the LRAT-like enzyme family.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Design of HRASLS–LRAT chimeric proteins.
Figure 2: HRASLS–LRAT chimeras catalyze formation of retinyl esters.
Figure 3: Crystal structure of the HRASLS3–LRAT chimeric protein.
Figure 4: Effect of the structural rearrangement on the enzymatic activity.
Figure 5: The acylated form of HRASLS3–LRAT.
Figure 6: Phospholipid membrane topology of the HRASL3–LRAT chimera.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Wymann, M.P. & Schneiter, R. Lipid signalling in disease. Nat. Rev. Mol. Cell Biol. 9, 162–176 (2008).

    CAS  PubMed  Google Scholar 

  2. Forneris, F. & Mattevi, A. Enzymes without borders: mobilizing substrates, delivering products. Science 321, 213–216 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Derewenda, Z.S. Structure and function of lipases. Adv. Protein Chem. 45, 1–52 (1994).

    Article  CAS  PubMed  Google Scholar 

  4. Golczak, M. & Palczewski, K. An acyl-covalent enzyme intermediate of lecithin:retinol acyltransferase. J. Biol. Chem. 285, 29217–29222 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Anantharaman, V. & Aravind, L. Evolutionary history, structural features and biochemical diversity of the NlpC/P60 superfamily of enzymes. Genome Biol. 4, R11 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Albalat, R. Evolution of the genetic machinery of the visual cycle: a novelty of the vertebrate eye? Mol. Biol. Evol. 29, 1461–1469 (2012).

    Article  CAS  PubMed  Google Scholar 

  7. Batten, M.L. et al. Lecithin-retinol acyltransferase is essential for accumulation of all-trans-retinyl esters in the eye and in the liver. J. Biol. Chem. 279, 10422–10432 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Liu, L. & Gudas, L.J. Disruption of the lecithin: retinol acyltransferase gene makes mice more susceptible to vitamin a deficiency. J. Biol. Chem. 280, 40226–40234 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Amengual, J., Golczak, M., Palczewski, K. & von Lintig, J. Lecithin: Retinol acyltransferase is critical for cellular uptake of vitamin A from serum retinol-binding protein. J. Biol. Chem. 287, 24216–24227 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dev Borman, A. et al. Early onset retinal dystrophy due to mutations in LRAT: molecular analysis and detailed phenotypic study. Invest. Ophthalmol. Vis. Sci. 53, 3927–3938 (2012).

    Article  CAS  PubMed  Google Scholar 

  11. Jaworski, K. et al. AdPLA ablation increases lipolysis and prevents obesity induced by high-fat feeding or leptin deficiency. Nat. Med. 15, 159–168 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wolf, G. Adipose-specific phospholipase as regulator of adiposity. Nutr. Rev. 67, 551–554 (2009).

    Article  PubMed  Google Scholar 

  13. Golczak, M. et al. Structural basis for the acyltransferase activity of lecithin:retinol acyltransferase-like proteins. J. Biol. Chem. 287, 23790–23807 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Uyama, T., Jin, X.H., Tsuboi, K., Tonai, T. & Ueda, N. Characterization of the human tumor suppressors TIG3 and HRASLS2 as phospholipid-metabolizing enzymes. Biochim. Biophys. Acta 1791, 1114–1124 (2009).

    Article  CAS  PubMed  Google Scholar 

  15. Uyama, T. et al. Generation of N-acylphosphatidylethanolamine by members of the phospholipase A/acyltransferase (PLA/AT) family. J. Biol. Chem. 287, 31905–31919 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Han, B.G. et al. Expression, purification and biochemical characterization of the N-terminal regions of human TIG3 and HRASLS3 proteins. Protein Expr. Purif. 71, 103–107 (2010).

    Article  CAS  PubMed  Google Scholar 

  17. MacDonald, P.N. & Ong, D.E. A lecithin:retinol acyltransferase activity in human and rat liver. Biochem. Biophys. Res. Commun. 156, 157–163 (1988).

    Article  CAS  PubMed  Google Scholar 

  18. Jin, X.H. et al. Discovery and characterization of a Ca2+-independent phosphatidylethanolamine N-acyltransferase generating the anandamide precursor and its congeners. J. Biol. Chem. 282, 3614–3623 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Ren, X., Lin, J., Jin, C. & Xia, B. Solution structure of the N-terminal catalytic domain of human H-REV107—a novel circular permutated NlpC/P60 domain. FEBS Lett. 584, 4222–4226 (2010).

    Article  CAS  PubMed  Google Scholar 

  20. Pang, X.Y. et al. Structure/function relationships of adipose phospholipase A2 containing a cys-his-his catalytic triad. J. Biol. Chem. 287, 35260–35274 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Saari, J.C. & Bredberg, D.L. Lecithin:retinol acyltransferase in retinal pigment epithelial microsomes. J. Biol. Chem. 264, 8636–8640 (1989).

    CAS  PubMed  Google Scholar 

  22. Bolen, A.L. et al. The phospholipase A1 activity of lysophospholipase A-I links platelet activation to LPA production during blood coagulation. J. Lipid Res. 52, 958–970 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sano, T. et al. Multiple mechanisms linked to platelet activation result in lysophosphatidic acid and sphingosine 1-phosphate generation in blood. J. Biol. Chem. 277, 21197–21206 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Uyama, T. et al. The tumor suppressor gene H-Rev107 functions as a novel Ca2+-independent cytosolic phospholipase A1/2 of the thiol hydrolase type. J. Lipid Res. 50, 685–693 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rahman, I.A., Tsuboi, K., Uyama, T. & Ueda, N. New players in the fatty acyl ethanolamide metabolism. Pharmacol. Res. 86, 1–10 (2014).

    Article  CAS  PubMed  Google Scholar 

  26. Lawrence, M.C. & Colman, P.M. Shape complementarity at protein/protein interfaces. J. Mol. Biol. 234, 946–950 (1993).

    Article  CAS  PubMed  Google Scholar 

  27. Liu, M. & Subbaiah, P.V. Hydrolysis and transesterification of platelet-activating factor by lecithin-cholesterol acyltransferase. Proc. Natl. Acad. Sci. USA 91, 6035–6039 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fournand, D. & Arnaud, A. Aliphatic and enantioselective amidases: from hydrolysis to acyl transfer activity. J. Appl. Microbiol. 91, 381–393 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Jiang, Y., Morley, K.L., Schrag, J.D. & Kazlauskas, R.J. Different active-site loop orientation in serine hydrolases versus acyltransferases. ChemBioChem 12, 768–776 (2011).

    Article  CAS  PubMed  Google Scholar 

  30. Jahng, W.J., Cheung, E. & Rando, R.R. Lecithin retinol acyltransferase forms functional homodimers. Biochemistry 41, 6311–6319 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Bok, D. et al. Purification and characterization of a transmembrane domain-deleted form of lecithin retinol acyltransferase. Biochemistry 42, 6090–6098 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Golczak, M., Kiser, P.D., Lodowski, D.T., Maeda, A. & Palczewski, K. Importance of membrane structural integrity for RPE65 retinoid isomerization activity. J. Biol. Chem. 285, 9667–9682 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Conant, G.C. & Wolfe, K.H. Turning a hobby into a job: how duplicated genes find new functions. Nat. Rev. Genet. 9, 938–950 (2008).

    Article  CAS  PubMed  Google Scholar 

  34. Khersonsky, O. & Tawfik, D.S. Enzyme promiscuity: a mechanistic and evolutionary perspective. Annu. Rev. Biochem. 79, 471–505 (2010).

    Article  CAS  PubMed  Google Scholar 

  35. O′Brien, P.J. & Herschlag, D. Catalytic promiscuity and the evolution of new enzymatic activities. Chem. Biol. 6, R91–R105 (1999).

    Article  PubMed  Google Scholar 

  36. Jacob, F. Evolution and tinkering. Science 196, 1161–1166 (1977).

    Article  CAS  PubMed  Google Scholar 

  37. Albalat, R. Evolution of the genetic machinery of the visual cycle: a novelty of the vertebrate eye? Mol. Biol. Evol. 29, 1461–1469 (2012).

    Article  CAS  PubMed  Google Scholar 

  38. Kusakabe, T.G., Takimoto, N., Jin, M.H. & Tsuda, M. Evolution and the origin of the visual retinoid cycle in vertebrates. Phil. Trans. R. Soc. Lond. B 364, 2897–2910 (2009).

    Article  CAS  Google Scholar 

  39. Poliakov, E. et al. Origin and evolution of retinoid isomerization machinery in vertebrate visual cycle: hint from jawless vertebrates. PLoS ONE 7, e49975 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Jin, M., Li, S.H., Moghrabi, W.N., Sun, H. & Travis, G.H. Rpe65 is the retinoid isomerase in bovine retinal pigment epithelium. Cell 122, 449–459 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Redmond, T.M. et al. Mutation of key residues of RPE65 abolishes its enzymatic role as isomerohydrolase in the visual cycle. Proc. Natl. Acad. Sci. USA 102, 13658–13663 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bussières, S., Cantin, L., Desbat, B. & Salesse, C. Binding of a truncated form of lecithin:retinol acyltransferase and its N- and C-terminal peptides to lipid monolayers. Langmuir 28, 3516–3523 (2012).

    Article  CAS  PubMed  Google Scholar 

  43. Kiser, P.D., Golczak, M. & Palczewski, K. Chemistry of the retinoid (visual) cycle. Chem. Rev. 114, 194–232 (2014).

    Article  CAS  PubMed  Google Scholar 

  44. Pakhomova, S., Kobayashi, M., Buck, J. & Newcomer, M.E. A helical lid converts a sulfotransferase to a dehydratase. Nat. Struct. Biol. 8, 447–451 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. Cañada, F.J. et al. Substrate specificities and mechanism in the enzymatic processing of vitamin A into 11-cis-retinol. Biochemistry 29, 9690–9697 (1990).

    Article  PubMed  Google Scholar 

  46. Burger, A., Berendes, R., Voges, D., Huber, R. & Demange, P. A rapid and efficient purification method for recombinant annexin V for biophysical studies. FEBS Lett. 329, 25–28 (1993).

    Article  CAS  PubMed  Google Scholar 

  47. Golczak, M. et al. Metabolic basis of visual cycle inhibition by retinoid and nonretinoid compounds in the vertebrate retina. J. Biol. Chem. 283, 9543–9554 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lakowicz, J.R. Principles of Fluorescence Spectroscopy (Springer, New York, 2006).

  49. Kabsch, W. Xds. Acta Crystallogr. D Biol. Crystallogr. 66, 125–132 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Winn, M.D. et al. Overview of the CCP4 suite and current developments. Acta Crystallogr. D Biol. Crystallogr. 67, 235–242 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Mccoy, A.J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240–255 (1997).

    Article  CAS  PubMed  Google Scholar 

  53. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    PubMed  Google Scholar 

  54. Painter, J. & Merritt, E.A. Optimal description of a protein structure in terms of multiple groups undergoing TLS motion. Acta Crystallogr. D Biol. Crystallogr. 62, 439–450 (2006).

    Article  CAS  PubMed  Google Scholar 

  55. Davis, I.W. et al. MolProbity: all-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res. 35, W375–W383 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank X. Tu and B.M. Kevany for initial X-ray diffraction data collection of HRASLS3–LRAT crystals and L.T. Webster, Jr. for help in preparation of this manuscript. This work was supported by grants EY023948 (M.G.) and EY009339 (K.P.) from the National Eye Institute of the National Institutes of Health (NIH), the Medical Scientist Training Program grant T32 GM007250 (A.E.S.) from the National Institutes of Health (NIH) as well as the Nutrition and Obesity Research Center at CWRU (M.G.). We thank the Northeastern Collaborative Access Team staff for assistance with diffraction data collection. Use of the Advanced Photon Source, an Office of the Science User Facility operated for the US Department of Energy Office of Science by the Argonne National Laboratory, was supported by the US Department of Energy under contract DE-AC02-06CH11357. Preliminary data for this study were obtained at beamline X29 of the National Synchrotron Light Source. Its financial support is derived principally from the Offices of Biological and Environmental Research and of Basic Energy Sciences of the United States Department of Energy and by NIH Grant P41RR012408 from the US National Center for Research Resources and P41GM103473 from the US National Institute of General Medical Sciences. K.P. is John H. Hord Professor of Pharmacology.

Author information

Authors and Affiliations

Authors

Contributions

M.G. and K.P. designed the experiments. M.G. and A.E.S. performed biochemical experiments and crystallized HRASLS3–LRAT. M.G. and P.D.K. collected and processed the crystallographic data. All authors contributed to the data analyses. M.G. and A.E.S. wrote the manuscript with valuable input from P.D.K. and K.P.

Corresponding authors

Correspondence to Marcin Golczak or Krzysztof Palczewski.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Table 1 and Supplementary Figures 1–12. (PDF 2207 kb)

Supplementary Video

Structural organization of the active site in HRASLS3–LRAT chimeric enzyme (MOV 14695 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golczak, M., Sears, A., Kiser, P. et al. LRAT-specific domain facilitates vitamin A metabolism by domain swapping in HRASLS3. Nat Chem Biol 11, 26–32 (2015). https://doi.org/10.1038/nchembio.1687

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1687

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing