Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Calyculin biogenesis from a pyrophosphate protoxin produced by a sponge symbiont

Abstract

The Japanese marine sponge Discodermia calyx contains a major cytotoxic compound, calyculin A, which exhibits selective inhibition of protein phosphatases 1 and 2A. It has long been used as a chemical tool to evaluate intracellular signal transduction regulated by reversible protein phosphorylation. We describe the identification of the biosynthetic gene cluster of calyculin A by a metagenome mining approach. Single-cell analysis revealed that the gene cluster originates in the symbiont bacterium 'Candidatus Entotheonella' sp. A phosphotransferase encoded in the gene cluster deactivated calyculin A to produce a newly discovered diphosphate, which was actually the biosynthetic end product. The diphosphate had been previously overlooked because of the enzymatic dephosphorylation that occurred in response to sponge tissue disruption. Our work presents what is to our knowledge the first evidence for the biosynthetic process of calyculin A along with a notable phosphorylation-dephosphorylation mechanism to regulate toxicity, suggesting activated chemical defense in the most primitive of all multicellular animals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Calyculin A from the marine sponge Discodermia calyx.
Figure 2: The biosynthetic gene cluster and proposed pathway of calyculin A.
Figure 3: Monitoring of the conversion of phosphocalyculin A to calyculin A.
Figure 4: Symbiont bacteria bearing calyculin NRPS-PKS genes.
Figure 5: Conversion of phosphocalyculin A to calyculin A after wounding the sponge tissue.
Figure 6: Phylogenetic tree of phosphotransferases involved in antibiotic resistance systems.

Similar content being viewed by others

Accession codes

Primary accessions

NCBI Reference Sequence

Referenced accessions

NCBI Reference Sequence

References

  1. Döderlein, L. Studien an japanischen Lithistiden. Zeitschr. f. wiss. Zool. 40, 62–104 (1883).

    Google Scholar 

  2. Kato, Y. et al. Calyculin A, a novel antitumor metabolite from the marine sponge Discodermia calyx. J. Am. Chem. Soc. 108, 2780–2781 (1986).

    CAS  Google Scholar 

  3. Ishihara, H. et al. Calyculin A and okadaic acid: inhibitors of protein phosphatase activity. Biochem. Biophys. Res. Commun. 159, 871–877 (1989).

    CAS  PubMed  Google Scholar 

  4. Wakimoto, T., Matsunaga, S., Takai, A. & Fusetani, N. Insight into binding of calyculin A to protein phosphatase 1: isolation of hemicalyculin A and chemical transformation of calyculin A. Chem. Biol. 9, 309–319 (2002).

    CAS  PubMed  Google Scholar 

  5. Kita, A. et al. Crystal structure of the complex between calyculin A and the catalytic subunit of protein phosphatase 1. Structure 10, 715–724 (2002).

    CAS  PubMed  Google Scholar 

  6. Fagerholm, A.E., Habrant, D. & Koskinen, A.M.P. Calyculins and related marine natural products as serine-threonine protein phosphatase PP1 and PP2A inhibitors and total syntheses of calyculin A, B, and C. Mar. Drugs 8, 122–172 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Bewley, C.A. & Faulkner, D.J. Lithistid sponges: star performers or hosts to the stars. Angew. Chem. Int. Ed. 37, 2162–2178 (1998).

    Google Scholar 

  8. Dumdei, E.J., Blunt, J.W., Munro, M.H.G. & Pannell, L.K. Isolation of calyculins, calyculinamides, and swinholide H from the New Zealand deep-water marine sponge Lamellomorpha strongylata. J. Org. Chem. 62, 2636–2639 (1997).

    CAS  PubMed  Google Scholar 

  9. Fu, X., Schmitz, F.J., Kelly-Borges, M., McCready, T.L. & Holmes, C.F.B. Clavosines A–C from the marine sponge Myriastra clavosa: potent cytotoxins and inhibitors of protein phosphatases 1 and 2A. J. Org. Chem. 63, 7957–7963 (1998).

    CAS  Google Scholar 

  10. Kehraus, S., König, G.M. & Wright, A.D. A new cytotoxic calyculinamide derivative, geometricin A, from the Australian sponge Luffariella geometrica. J. Nat. Prod. 65, 1056–1058 (2002).

    CAS  PubMed  Google Scholar 

  11. Edrada, R.A. et al. Swinhoeiamide A, a new highly active calyculin derivative from the marine sponge Theonella swinhoei. J. Nat. Prod. 65, 1168–1172 (2002).

    CAS  PubMed  Google Scholar 

  12. Schirmer, A. et al. Metagenomic analysis reveals diverse polyketide synthase gene clusters in microorganisms associated with the marine sponge Discodermia dissolute. Appl. Environ. Microbiol. 71, 4840–4849 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Paul, V.J., Arthur, K.E., Ritson-Williams, R., Ross, C. & Sharp, K. Chemical defenses: from compounds to communities. Biol. Bull. 213, 226–251 (2007).

    CAS  PubMed  Google Scholar 

  14. Piel, J. Biosynthesis of polyketides by trans-AT polyketide synthases. Nat. Prod. Rep. 27, 996–1047 (2010).

    CAS  PubMed  Google Scholar 

  15. Hrvatin, S. & Piel, J. Rapid isolation of rare clones from highly complex DNA libraries by PCR analysis of liquid gel pools. J. Microbiol. Methods 68, 434–436 (2007).

    CAS  PubMed  Google Scholar 

  16. Calderone, C.T., Kowtoniuk, W.E., Kelleher, N.L., Walsh, C.T. & Dorrestein, P.C. Convergence of isoprene and polyketide biosynthetic machinery: Isoprenyl-S-carrier proteins in the pksX pathway of Bacillus subtilis. Proc. Natl. Acad. Sci. USA 103, 8977–8982 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Stachelhaus, T., Mootz, H.D. & Marahiel, M.A. The specificity-conferring code of adenylation domains in nonribosomal peptide synthetases. Chem. Biol. 6, 493–505 (1999).

    CAS  PubMed  Google Scholar 

  18. Kato, Y., Fusetani, N., Matsunaga, S., Hashimoto, K. & Koseki, K. Isolation and structure elucidation of calyculins B, C, and D, novel antitumor metabolites, from the marine sponge Discodermia calyx. J. Org. Chem. 53, 3930–3932 (1988).

    CAS  Google Scholar 

  19. Kwan, D.H. & Leadlay, P.F. Mutagenesis of a modular polyketide synthase enoylreductase domain reveals insights into catalysis and stereospecificity. ACS Chem. Biol. 5, 829–838 (2010).

    CAS  PubMed  Google Scholar 

  20. Piel, J. et al. Antitumor polyketide biosynthesis by an uncultivated bacterial symbiont of the marine sponge Theonella swinhoei. Proc. Natl. Acad. Sci. USA 101, 16222–16227 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Tang, M.-C., He, H.-Y., Zhang, F. & Tang, G.-L. Baeyer-Villiger oxidation of acyl carrier protein–tethered thioester to acyl carrier protein-linked thiocarbonate catalyzed by a monooxygenase domain in FR901464 biosynthesis. ACS Catal. 3, 444–447 (2013).

    CAS  Google Scholar 

  22. Julien, B., Tian, Z.-Q., Reid, R. & Reeves, C.D. Analysis of the ambruticin and jerangolid gene clusters of Sorangium cellulosum reveals unusual mechanisms of polyketide biosynthesis. Chem. Biol. 13, 1277–1286 (2006).

    CAS  PubMed  Google Scholar 

  23. Teufel, R. et al. Flavin-mediated dual oxidation controls an enzymatic Favorskii-type rearrangement. Nature 503, 552–556 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Reid, R. et al. A model of structure and catalysis for ketoreductase domains in modular polyketide synthases. Biochemistry 42, 72–79 (2003).

    CAS  PubMed  Google Scholar 

  25. Haines, A.S. et al. A conserved motif flags acyl carrier proteins for β-branching in polyketide synthesis. Nat. Chem. Biol. 9, 685–692 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Nguyen, T. et al. Exploiting the mosaic structure of trans-acyltransferase polyketide synthases for natural product discovery and pathway dissection. Nat. Biotechnol. 26, 225–233 (2008).

    CAS  PubMed  Google Scholar 

  27. Butcher, R.A. et al. The identification of bacillaene, the product of the PksX megacomplex in Bacillus subtilis. Proc. Natl. Acad. Sci. USA 104, 1506–1509 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Kusebauch, B., Busch, B., Scherlach, K., Roth, M. & Hertweck, C. Functionally distinct modules operate two consecutive α,β→β,γ double-bond shifts in the rhizoxin polyketide assembly line. Angew. Chem. Int. Ed. 49, 1460–1464 (2010).

    CAS  Google Scholar 

  29. Moldenhauer, J. et al. The final steps of bacillaene biosynthesis in Bacillus amyloliquefaciens FZB42: direct evidence for β,γ dehydration by a trans-acyltransferase polyketide synthase. Angew. Chem. Int. Ed. 49, 1465–1467 (2010).

    CAS  Google Scholar 

  30. Müller, I. et al. A unique mechanism for methyl ester formation via an amide intermediate found in myxobacteria. ChemBioChem 7, 1197–1205 (2006).

    PubMed  Google Scholar 

  31. Matsunaga, S., Wakimoto, T. & Fusetani, N. Isolation of four new calyculins from the marine sponge Discodermia calyx. J. Org. Chem. 62, 2640–2642 (1997).

    CAS  PubMed  Google Scholar 

  32. Olano, C. et al. Biosynthesis of the angiogenesis inhibitor borrelidin by Streptomyces parvulus Tü4055: insights into nitrile formation. Mol. Microbiol. 52, 1745–1756 (2004).

    CAS  PubMed  Google Scholar 

  33. Matsunaga, S., Wakimoto, T., Fusetani, N. & Suganuma, M. Isolation of dephosphonocalyculin A from the marine sponge, Discodermia calyx. Tetrahedr. Lett. 38, 3763–3764 (1997).

    CAS  Google Scholar 

  34. Schmidt, E.W., Obraztsova, A.Y., Davidson, S.K., Faulkner, D.J. & Haygood, M.G. Identification of the antifungal peptide-containing symbiont of the marine sponge Theonella swinhoei as a novel δ-proteobacterium, “Candidatus Entotheonella palauensis”. Mar. Biol. 136, 969–977 (2000).

    CAS  Google Scholar 

  35. Pernthaler, A., Pernthaler, J. & Amann, R. Fluorescence in situ hybridization and catalyzed reporter deposition for the identification of marine bacteria. Appl. Environ. Microbiol. 68, 3094–3101 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Kimura, M. et al. Calyxamides A and B, cytotoxic cyclic peptides from the marine sponge Discodermia calyx. J. Nat. Prod. 75, 290–294 (2012).

    CAS  PubMed  Google Scholar 

  37. Wilson, M.C. et al. Discovery of an environmental bacterial taxon with a large and distinct metabolic repertoire. Nature 506, 58–62 (2014).

    CAS  PubMed  Google Scholar 

  38. Paul, V.J. & Van Alstyne, K.L. Activation of chemical defenses in the tropical green algae Halimeda spp. J. Exp. Mar. Biol. Ecol. 160, 191–203 (1992).

    CAS  Google Scholar 

  39. Freeman, M.F. et al. Metagenome mining reveals polytheonamides as posttranslationally modified ribosomal peptides. Science 338, 387–390 (2012).

    CAS  PubMed  Google Scholar 

  40. Kaasalainen, U. et al. Cyanobacteria produce a high variety of hepatotoxic peptides in lichen symbiosis. Proc. Natl. Acad. Sci. USA 109, 5886–5891 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Wiens, M. et al. Okadaic acid: a potential defense molecule for the sponge Suberites domuncula. Mar. Biol. 142, 213–223 (2003).

    CAS  Google Scholar 

  42. Konoki, K. et al. Binding of diarrheic shellfish poisoning toxins to okadaic acid binding proteins purified from the sponge Halichondria okadai. Bioorg. Med. Chem. 18, 7607–7610 (2010).

    CAS  PubMed  Google Scholar 

  43. Shakya, T. et al. A small molecule discrimination map of the antibiotic resistance kinome. Chem. Biol. 18, 1591–1601 (2011).

    CAS  PubMed  Google Scholar 

  44. Wittstock, U. & Gershenzon, J. Constitutive plant toxins and their role in defense against herbivores and pathogens. Curr. Opin. Plant Biol. 5, 300–307 (2002).

    CAS  PubMed  Google Scholar 

  45. Wolfe, G.V., Steinke, M. & Kirst, G.O. Grazing-activated chemical defence in a unicellular marine alga. Nature 387, 894–897 (1997).

    CAS  Google Scholar 

  46. Teeyapant, R. & Proksch, R. Biotransformation of brominated compounds in the marine sponge Verongia aerophoba—evidence for an induced chemical defense? Naturwissenschaften 80, 369–370 (1993).

    CAS  Google Scholar 

  47. Thoms, C. & Schupp, P.J. Activated chemical defense in marine sponges—a case study on Aplysinella rhax. J. Chem. Ecol. 34, 1242–1252 (2008).

    CAS  PubMed  Google Scholar 

  48. Fieseler, L. et al. Widespread occurrence and genomic context of unusually small polyketide synthase genes in microbial consortia associated with marine sponges. Environ. Microbiol. 8, 921–927 (2004).

    Google Scholar 

  49. Beyer, S., Kunze, B., Silakowski, B. & Müller, R. Metabolic diversity in myxobacteria: identification of the myxalamid and the stigmatellin biosynthetic gene cluster of Stigmatella aurantiaca Sg a15 and a combined polyketide-(poly)peptide gene cluster from the epothilone producing strain Sorangium cellulosum So ce90. Biochim. Biophys. Acta 1445, 185–195 (1999).

    CAS  PubMed  Google Scholar 

  50. Ginolhac, A. et al. Phylogenetic analysis of polyketide synthase I domains from soil metagenomic libraries allows selection of promising clones. Appl. Environ. Microbiol. 70, 5522–5527 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Moffitt, M.C. & Neilan, B.A. Evolutionary affiliations within the superfamily of ketosynthases reflect complex pathway associations. J. Mol. Evol. 56, 446–457 (2003).

    CAS  PubMed  Google Scholar 

  52. He, R. et al. Porphyrins from a metagenomic library of the marine sponge Discodermia calyx. Mol. Biosyst. 8, 2334–2338 (2012).

    CAS  PubMed  Google Scholar 

  53. Ayuso-Sacido, A. & Genilloud, O. New PCR primers for the screening of NRPS and PKS-I systems in actinomycetes: detection and distribution of these biosynthetic gene sequences in major taxonomic groups. Microb. Ecol. 49, 10–24 (2005).

    CAS  PubMed  Google Scholar 

  54. Schmieder, R., Lim, Y.W., Rohwer, F. & Edwards, R. TagCleaner: identification and removal of tag sequences from genomic and metagenomic datasets. BMC Bioinformatics 11, 341–354 (2010).

    PubMed  PubMed Central  Google Scholar 

  55. Simpson, J.T. et al. ABySS: a parallel assembler for short read sequence data. Genome Res. 19, 1117–1123 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Huang, X., Wang, J., Aluru, S., Yang, S.-P. & Hiller, L. PCAP: a whole-genome assembly program. Genome Res. 13, 2164–2170 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Ishikawa, J. & Hotta, K. FramePlot: a new implementation of the Frame analysis for predicting protein-coding regions in bacterial DNA with a high G+C content. FEMS Microbiol. Lett. 174, 251–253 (1999).

    CAS  PubMed  Google Scholar 

  58. Delcher, A.L., Harmon, D., Kasif, S., White, O. & Salzberg, S.L. Improved microbial gene identification with GLIMMER. Nucleic Acids Res. 27, 4636–4641 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Bachmann, B.O. & Ravel, J. Methods for in silico prediction of microbial polyketide and nonribosomal peptide biosynthetic pathways from DNA sequence data. Methods Enzymol. 458, 181–217 (2009).

    CAS  PubMed  Google Scholar 

  60. Weisburg, W.G., Barns, S.M., Pelletier, D.A. & Lane, D.J. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173, 697–703 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank H. Morita (University of Toyama) and M.F. Freeman (ETH Zurich) for technical assistance; K. Takada (University of Tokyo) for assistance with the sponge collection; Y. Ise (University of Tokyo) for species identification; and M. Kamio (Tokyo University of Marine Science and Technology), N. Fusetani (Hokkaido University) and S. Matsunaga (University of Tokyo) for fruitful discussions. This work was carried out in part as joint research with the Japanese Association for Marine Biology (JAMBIO) and was partly supported by the Mitsubishi Foundation (I.A.), the Nagase Science Technology Foundation (T.W.), the Astellas Foundation for Research on Metabolic Disorders (T.W.), the CREST program from the Japan Science and Technology Agency (I.A.), the Bilateral Program between Japan and Switzerland from the Japan Society for the Promotion of Science (JSPS) (I.A.) and Grants-in-Aid from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan (T.W. and I.A.).

Author information

Authors and Affiliations

Authors

Contributions

T.W. and I.A. designed the research. T.W. collected sponge specimens. Y.E. constructed libraries and isolated cal genes. T.W., Y.E., T.I., H.K., Y.A., J.P. and I.A. sequenced and analyzed cal genes. T.W. and Y.E. performed the cell separation and elucidation of chemical structures as well as bioconversion experiments. Y.E. and Y.N. conducted the single-cell studies. Y.E., Y.N., Y.W., T.M. and T.A. characterized the enzymes. T.W., Y.E. and I.A. wrote the paper.

Corresponding authors

Correspondence to Toshiyuki Wakimoto or Ikuro Abe.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Tables 1–6 and Supplementary Figures 1–21. (PDF 8083 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wakimoto, T., Egami, Y., Nakashima, Y. et al. Calyculin biogenesis from a pyrophosphate protoxin produced by a sponge symbiont. Nat Chem Biol 10, 648–655 (2014). https://doi.org/10.1038/nchembio.1573

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1573

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology