Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Natural strategies for photosynthetic light harvesting

Abstract

Photosynthetic organisms are crucial for life on Earth as they provide food and oxygen and are at the basis of most energy resources. They have a large variety of light-harvesting strategies that allow them to live nearly everywhere where sunlight can penetrate. They have adapted their pigmentation to the spectral composition of light in their habitat, they acclimate to slowly varying light intensities and they rapidly respond to fast changes in light quality and quantity. This is particularly important for oxygen-producing organisms because an overdose of light in combination with oxygen can be lethal. Rapid progress is being made in understanding how different organisms maximize light harvesting and minimize deleterious effects. Here we summarize the latest findings and explain the main design principles used in nature. The available knowledge can be used for optimizing light harvesting in both natural and artificial photosynthesis to improve light-driven production processes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A model of the photosynthetic membrane of higher plants with the four major multi-protein complexes that participate in the light reactions.
Figure 2: Photosynthetic pigments: chlorophylls and bacteriochlorophylls.
Figure 3: Photosynthetic pigments: phycobilins and carotenoids.
Figure 4: Role of the antenna complexes.
Figure 7: Mechanisms of EET.
Figure 5: Examples of adaptation.
Figure 6: Light-harvesting complexes and tuning of the pigment spectra.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Blankenship, R.E. et al. Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement. Science 332, 805–809 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. Amunts, A., Drory, O. & Nelson, N. The structure of a plant photosystem I supercomplex at 3.4-Å resolution. Nature 447, 58–63 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Umena, Y., Kawakami, K., Shen, J.R. & Kamiya, N. Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å. Nature 473, 55–60 (2011).

    Article  CAS  PubMed  Google Scholar 

  4. Hohmann-Marriott, M.F. & Blankenship, R.E. Evolution of photosynthesis. Annu. Rev. Plant Biol. 62, 515–548 (2011). A comprehensive overview of the evolution of photosynthesis from molecules to organisms.

    Article  CAS  PubMed  Google Scholar 

  5. Green, B. & Parson, W.W. (eds.) Light-Harvesting Antennas in Photosynthesis (Kluwer Academic, 2003).

  6. Van Amerongen, H., van Grondelle, R. & Valkunas, L. Photosynthetic Excitons (World Scientific, 2000).

  7. Blankenship, R.E. Molecular Mechanisms of Photosynthesis (Blackwell Science, 2002). An excellent introduction to photosynthesis and a 'must read' for anyone entering the field.

  8. Stomp, M., Huisman, J., Stal, L.J. & Matthijs, H.C.P. Colorful niches of phototrophic microorganisms shaped by vibrations of the water molecule. ISME J. 1, 271–282 (2007).The authors use model calculations to demonstrate that light absorption by water defines a series of distinct spectral niches in the underwater light spectrum that match the light absorption spectra of the major photosynthetic pigments on Earth.

    Article  CAS  PubMed  Google Scholar 

  9. Romero, E., van Stokkum, I.H.M., Novoderezhkin, V.I., Dekker, J.P. & van Grondelle, R. Two different charge separation pathways in photosystem II. Biochemistry 49, 4300–4307 (2010).

    Article  CAS  PubMed  Google Scholar 

  10. Jennings, R.C., Bassi, R., Garlaschi, F.M., Dainese, P. & Zucchelli, G. Distribution of the chlorophyll spectral forms in the chlorophyll/protein complexes of photosystem-II antenna. Biochemistry 32, 3203–3210 (1993).

    Article  CAS  PubMed  Google Scholar 

  11. Shibata, Y., Nishi, S., Kawakami, K., Shen, J.R. & Renger, T. Photosystem II does not possess a simple excitation energy funnel: time-resolved fluorescence spectroscopy meets theory. J. Am. Chem. Soc. 135, 6903–6914 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Belgio, E., Johnson, M.P., Juric, S. & Ruban, A.V. Higher plant photosystem II light-harvesting antenna, not the reaction center, determines the excited-state lifetime-both the maximum and the nonphotochemically quenched. Biophys. J. 102, 2761–2771 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Caffarri, S., Kouril, R., Kereiche, S., Boekema, E.J. & Croce, R. Functional architecture of higher plant photosystem II supercomplexes. EMBO J. 28, 3052–3063 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Caffarri, S., Broess, K., Croce, R. & van Amerongen, H. Excitation energy transfer and trapping in higher plant Photosystem II complexes with different antenna sizes. Biophys. J. 100, 2094–2103 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wientjes, E., van Amerongen, H. & Croce, R. Quantum yield of charge separation in photosystem II: functional effect of changes in the antenna size upon light acclimation. J. Phys. Chem. B 117, 11200–11208 (2013).

    Article  CAS  PubMed  Google Scholar 

  16. Scheer, H. in Light-harvesting Antenna in Photosynthesis (eds. Green, B. & Parson, W.W.) 29–81 (Kluwer Academic, 2003).

  17. Scheer, H. in Chlorophylls 3–30 (CRC Press, 1991).

  18. Schliep, M., Cavigliasso, G., Quinnell, R.G., Stranger, R. & Larkum, A.W. Formyl group modification of chlorophyll a: a major evolutionary mechanism in oxygenic photosynthesis. Plant Cell Environ. 36, 521–527 (2013).

    Article  CAS  PubMed  Google Scholar 

  19. Aravindu, K. et al. Amphiphilic chlorins and bacteriochlorins in micellar environments. Molecular design, de novo synthesis, and photophysical properties. Chem. Sci. 4, 3459–3477 (2013).

    Article  CAS  Google Scholar 

  20. Reddy, K.R. et al. Palette of lipophilic bioconjugatable bacteriochlorins for construction of biohybrid light-harvesting architectures. Chem. Sci. 4, 2036–2053 (2013).

    Article  CAS  Google Scholar 

  21. Ballottari, M., Girardon, J., Dall'osto, L. & Bassi, R. Evolution and functional properties of photosystem II light harvesting complexes in eukaryotes. Biochim. Biophys. Acta 1817, 143–157 (2012).

    Article  CAS  PubMed  Google Scholar 

  22. Songaila, E. et al. Ultrafast energy transfer from chlorophyll c2 to chlorophyll a in fucoxanthin-chlorophyll protein complex. J. Phys. Chem. Lett. 4, 3590–3595 (2013).

    Article  CAS  Google Scholar 

  23. Croce, R. & van Amerongen, H. Light-harvesting and structural organization of photosystem II: from individual complexes to thylakoid membrane. J. Photochem. Photobiol. B 104, 142–153 (2011).

    Article  CAS  PubMed  Google Scholar 

  24. Sarovar, M. & Whaley, K.B. Design principles and fundamental trade-offs in biomimetic light harvesting. New J. Phys. 15, 013030 (2013).

    Article  Google Scholar 

  25. Huelga, S.F. & Plenio, M.B. Vibrations, quanta and biology. Contemp. Phys. 54, 181–207 (2013).

    Article  CAS  Google Scholar 

  26. Kühl, M., Chen, M., Ralph, P.J., Schreiber, U. & Larkum, A.W. Ecology: a niche for cyanobacteria containing chlorophyll d. Nature 433, 820 (2005).

    Article  PubMed  CAS  Google Scholar 

  27. Chen, M. & Blankenship, R.E. Expanding the solar spectrum used by photosynthesis. Trends Plant Sci. 16, 427–431 (2011).

    Article  CAS  PubMed  Google Scholar 

  28. Schlodder, E. et al. Both chlorophylls a and d are essential for the photochemistry in photosystem II of the cyanobacteria, Acaryochloris marina. Biochim. Biophys. Acta 1767, 589–595 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Itoh, S. et al. Function of chlorophyll d in reaction centers of photosystems I and II of the oxygenic photosynthesis of Acaryochloris marina. Biochemistry 46, 12473–12481 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Allakhverdiev, S.I. et al. Redox potential of pheophytin a in photosystem II of two cyanobacteria having the different special pair chlorophylls. Proc. Natl. Acad. Sci. USA 107, 3924–3929 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chen, M. et al. A red-shifted chlorophyll. Science 329, 1318–1319 (2010). An unexpected discovery of a cyanobacterium with a substantial amount of a chlorophyll (Chl f ) that absorbs at far longer wavelengths than the primary electron donors in oxygenic photosynthesis.

    Article  CAS  PubMed  Google Scholar 

  32. Wientjes, E., van Stokkum, I.H., van Amerongen, H. & Croce, R. The role of the individual Lhcas in photosystem I excitation energy trapping. Biophys. J. 101, 745–754 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ganapathy, S. et al. Alternating syn-anti bacteriochlorophylls form concentric helical nanotubes in chlorosomes. Proc. Natl. Acad. Sci. USA 106, 8525–8530 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Oostergetel, G.T., van Amerongen, H. & Boekema, E.J. The chlorosome: a prototype for efficient light harvesting in photosynthesis. Photosynth. Res. 104, 245–255 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Balaban, T.S. et al. Mimics of the self-assembling chlorosomal bacteriochlorophylls: regio- and stereoselective synthesis and stereoanalysis of acyl(1-hydroxyalkyl)porphyrins. J. Am. Chem. Soc. 131, 14480–14492 (2009).

    Article  CAS  PubMed  Google Scholar 

  36. Prokhorenko, V.I., Steensgaard, D.B. & Holzwarth, A.R. Exciton dynamics in the chlorosomal antennae of the green bacteria Chloroflexus aurantiacus and Chlorobium tepidum. Biophys. J. 79, 2105–2120 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cogdell, R.J., Gall, A. & Kohler, J. The architecture and function of the light-harvesting apparatus of purple bacteria: from single molecules to in vivo membranes. Q. Rev. Biophys. 39, 227–324 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. Niwa, S. et al. Structure of the LH1-RC complex from Thermochromatium tepidum at 3.0 Å. Nature 508, 228–232 (2014).

    Article  CAS  PubMed  Google Scholar 

  39. Monshouwer, R., Visschers, R.W., van Mourik, F., Freiberg, A. & van Grondelle, R. Low-temperature absorption and site-selected fluorescence of the light-harvesting antenna of Rhodopseudomonas viridis. Evidence for heterogeneity. Biochim. Biophys. Acta 1229, 373–380 (1995).

    Article  Google Scholar 

  40. Lepetit, B., Goss, R., Jakob, T. & Wilhelm, C. Molecular dynamics of the diatom thylakoid membrane under different light conditions. Photosynth. Res. 111, 245–257 (2012).

    Article  CAS  PubMed  Google Scholar 

  41. Polívka, T. & Frank, H.A. Molecular factors controlling photosynthetic light harvesting by carotenoids. Acc. Chem. Res. 43, 1125–1134 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Schulte, T. et al. Identification of a single peridinin sensing Chl-a excitation in reconstituted PCP by crystallography and spectroscopy. Proc. Natl. Acad. Sci. USA 106, 20764–20769 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Krieger-Liszkay, A., Fufezan, C. & Trebst, A. Singlet oxygen production in photosystem II and related protection mechanism. Photosynth. Res. 98, 551–564 (2008).

    Article  CAS  PubMed  Google Scholar 

  44. Liu, H. et al. Phycobilisomes supply excitations to both photosystems in a megacomplex in cyanobacteria. Science 342, 1104–1107 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Beddard, G.S. & Porter, G. Concentration quenching in chlorophyll. Nature 260, 366–367 (1976).

    Article  CAS  Google Scholar 

  46. Liu, Z. et al. Crystal structure of spinach major light-harvesting complex at 2.72-Å resolution. Nature 428, 287–292 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. Pan, X. et al. Structural insights into energy regulation of light-harvesting complex CP29 from spinach. Nat. Struct. Mol. Biol. 18, 309–315 (2011).

    Article  CAS  PubMed  Google Scholar 

  48. Braun, P. et al. Design principles for chlorophyll-binding sites in helical proteins. Proteins 79, 463–476 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wientjes, E., Roest, G. & Croce, R. From red to blue to far-red in Lhca4: How does the protein modulate the spectral properties of the pigments? Biochim. Biophys. Acta 1817, 711–717 (2012).

    Article  CAS  PubMed  Google Scholar 

  50. Fowler, G.J., Visschers, R.W., Grief, G.G., van Grondelle, R. & Hunter, C.N. Genetically modified photosynthetic antenna complexes with blueshifted absorbance bands. Nature 355, 848–850 (1992).

    Article  CAS  PubMed  Google Scholar 

  51. Morosinotto, T., Mozzo, M., Bassi, R. & Croce, R. Pigment-pigment interactions in Lhca4 antenna complex of higher plants photosystem I. J. Biol. Chem. 280, 20612–20619 (2005).

    Article  CAS  PubMed  Google Scholar 

  52. Hirashima, M., Satoh, S., Tanaka, R. & Tanaka, A. Pigment shuffling in antenna systems achieved by expressing prokaryotic chlorophyllide a oxygenase in Arabidopsis. J. Biol. Chem. 281, 15385–15393 (2006).

    Article  CAS  PubMed  Google Scholar 

  53. Eberhard, S., Finazzi, G. & Wollman, F.A. The dynamics of photosynthesis. Annu. Rev. Genet. 42, 463–515 (2008).

    Article  CAS  PubMed  Google Scholar 

  54. Rochaix, J.D. Regulation and dynamics of the light-harvesting system. Annu. Rev. Plant Biol. 65, 287–309 (2014).

    Article  CAS  PubMed  Google Scholar 

  55. Ballottari, M., Dall'Osto, L., Morosinotto, T. & Bassi, R. Contrasting behavior of higher plant photosystem I and II antenna systems during acclimation. J. Biol. Chem. 282, 8947–8958 (2007).

    Article  CAS  PubMed  Google Scholar 

  56. Wientjes, E., van Amerongen, H. & Croce, R. LHCII is an antenna of both photosystems after long-term acclimation. Biochim. Biophys. Acta 1827, 420–426 (2013).This study shows that LHCII, the main light-harvesting complex in plants, is associated with both photosystems in nearly all light conditions, allowing the simultaneous regulation of their antenna size.

    Article  CAS  PubMed  Google Scholar 

  57. Niederman, R.A. Membrane development in purple photosynthetic bacteria in response to alterations in light intensity and oxygen tension. Photosynth. Res. 116, 333–348 (2013).

    Article  CAS  PubMed  Google Scholar 

  58. Gutu, A. & Kehoe, D.M. Emerging perspectives on the mechanisms, regulation, and distribution of light color acclimation in cyanobacteria. Mol. Plant 5, 1–13 (2012).

    Article  CAS  PubMed  Google Scholar 

  59. Niyogi, K.K. & Truong, T.B. Evolution of flexible non-photochemical quenching mechanisms that regulate light harvesting in oxygenic photosynthesis. Curr. Opin. Plant Biol. 16, 307–314 (2013).

    Article  CAS  PubMed  Google Scholar 

  60. Krüger, T.P., Wientjes, E., Croce, R. & van Grondelle, R. Conformational switching explains the intrinsic multifunctionality of plant light-harvesting complexes. Proc. Natl. Acad. Sci. USA 108, 13516–13521 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Li, X.P. et al. A pigment-binding protein essential for regulation of photosynthetic light harvesting. Nature 403, 391–395 (2000).

    Article  CAS  PubMed  Google Scholar 

  62. Peers, G. et al. An ancient light-harvesting protein is critical for the regulation of algal photosynthesis. Nature 462, 518–521 (2009).This study reports the discovery of the protein responsible for nonphotochemical quenching in the green alga C. reinhardtii (LhcSR) and shows that it is only expressed upon high light acclimation.

    Article  CAS  PubMed  Google Scholar 

  63. Alboresi, A., Gerotto, C., Giacometti, G.M., Bassi, R. & Morosinotto, T. Physcomitrella patens mutants affected on heat dissipation clarify the evolution of photoprotection mechanisms upon land colonization. Proc. Natl. Acad. Sci. USA 107, 11128–11133 (2010).The authors show that in the moss Physcomitrella patens both PsbS and LhcSR are present and actively contribute to nonphotochemical quenching.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Bailleul, B. et al. An atypical member of the light-harvesting complex stress-related protein family modulates diatom responses to light. Proc. Natl. Acad. Sci. USA 107, 18214–18219 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Li, X.P. et al. Regulation of photosynthetic light harvesting involves intrathylakoid lumen pH sensing by the PsbS protein. J. Biol. Chem. 279, 22866–22874 (2004).

    Article  CAS  PubMed  Google Scholar 

  66. Krüger, T.P. et al. Controlled disorder in plant light-harvesting complex II explains its photoprotective role. Biophys. J. 102, 2669–2676 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Liguori, N., Roy, L.M., Opacic, M., Durand, G. & Croce, R. Regulation of light harvesting in the green alga chlamydomonas reinhardtii: the C-terminus of LHCSR is the knob of a dimmer switch. J. Am. Chem. Soc. 135, 18339–18342 (2013).

    Article  CAS  PubMed  Google Scholar 

  68. Holt, N.E. et al. Carotenoid cation formation and the regulation of photosynthetic light harvesting. Science 307, 433–436 (2005).

    Article  CAS  PubMed  Google Scholar 

  69. Ruban, A.V. et al. Identification of a mechanism of photoprotective energy dissipation in higher plants. Nature 450, 575–578 (2007).

    Article  CAS  PubMed  Google Scholar 

  70. Ahn, T.K. et al. Architecture of a charge-transfer state regulating light harvesting in a plant antenna protein. Science 320, 794–797 (2008).

    Article  CAS  PubMed  Google Scholar 

  71. Miloslavina, Y. et al. Far-red fluorescence: a direct spectroscopic marker for LHCII oligomer formation in nonphotochemical quenching. FEBS Lett. 582, 3625–3631 (2008).

    Article  CAS  PubMed  Google Scholar 

  72. Bode, S. et al. On the regulation of photosynthesis by excitonic interactions between carotenoids and chlorophylls. Proc. Natl. Acad. Sci. USA 106, 12311–12316 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Demmig-Adams, B. & Adams, W.W. III. Photoprotection in an ecological context: the remarkable complexity of thermal energy dissipation. New Phytol. 172, 11–21 (2006).

    Article  CAS  PubMed  Google Scholar 

  74. Wilson, A. et al. A photoactive carotenoid protein acting as light intensity sensor. Proc. Natl. Acad. Sci. USA 105, 12075–12080 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Kirilovsky, D. & Kerfeld, C.A. The orange carotenoid protein in photoprotection of photosystem II in cyanobacteria. Biochim. Biophys. Acta 1817, 158–166 (2012).

    Article  CAS  PubMed  Google Scholar 

  76. Tian, L. et al. Site, rate, and mechanism of photoprotective quenching in cyanobacteria. J. Am. Chem. Soc. 133, 18304–18311 (2011). In light-stressed cyanobacteria OCP is activated and binds to the phycobilisome. It is concluded that 80% of the excitations are prevented from reaching the RCs.

    Article  CAS  PubMed  Google Scholar 

  77. Rochaix, J.D. et al. Protein kinases and phosphatases involved in the acclimation of the photosynthetic apparatus to a changing light environment. Phil. Trans. R. Soc. Lond. B 367, 3466–3474 (2012).

    Article  CAS  Google Scholar 

  78. Iwai, M., Yokono, M., Inada, N. & Minagawa, J. Live-cell imaging of photosystem II antenna dissociation during state transitions. Proc. Natl. Acad. Sci. USA 107, 2337–2342 (2010).

    Article  CAS  PubMed  Google Scholar 

  79. Ünlu, C., Drop, B., Croce, R. & van Amerongen, H. State transitions in Chlamydomonas reinhardtii strongly modulate the functional size of photosystem II but not of photosystem I. Proc. Natl. Acad. Sci. USA 111, 3460–3465 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Allorent, G. et al. A dual strategy to cope with high light in Chlamydomonas reinhardtii. Plant Cell 25, 545–557 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Tikkanen, M., Grieco, M. & Aro, E.M. Novel insights into plant light-harvesting complex II phosphorylation and 'state transitions'. Trends Plant Sci. 16, 126–131 (2011).

    Article  CAS  PubMed  Google Scholar 

  82. Scholes, G.D., Fleming, G.R., Olaya-Castro, A. & van Grondelle, R. Lessons from nature about solar light harvesting. Nat. Chem. 3, 763–774 (2011).

    Article  CAS  PubMed  Google Scholar 

  83. Noy, D., Moser, C.C. & Dutton, P.L. Design and engineering of photosynthetic light-harvesting and electron transfer using length, time, and energy scales. Biochim. Biophys. Acta 1757, 90–105 (2006).

    Article  CAS  PubMed  Google Scholar 

  84. Zeng, X.L. et al. Bimodal intramolecular excitation energy transfer in a multichromophore photosynthetic model system: hybrid fusion proteins comprising natural phycobilin- and artificial chlorophyll-binding domains. J. Am. Chem. Soc. 135, 13479–13487 (2013).

    Article  CAS  PubMed  Google Scholar 

  85. Springer, J.W. et al. Biohybrid photosynthetic antenna complexes for enhanced light-harvesting. J. Am. Chem. Soc. 134, 4589–4599 (2012).This paper shows how to construct biohybrid light-harvesting complexes containing BChls and other chromophores that have enhanced light absorption and are capable of self-assembly and efficient energy transfer.

    Article  CAS  PubMed  Google Scholar 

  86. Straight, S.D. et al. Self-regulation of photoinduced electron transfer by a molecular nonlinear transducer. Nat. Nanotechnol. 3, 280–283 (2008).

    Article  CAS  PubMed  Google Scholar 

  87. Blankenship, R.E. & Chen, M. Spectral expansion and antenna reduction can enhance photosynthesis for energy production. Curr. Opin. Chem. Biol. 17, 457–461 (2013).

    Article  CAS  PubMed  Google Scholar 

  88. Melis, A. Solar energy conversion efficiencies in photosynthesis: Minimizing the chlorophyll antennae to maximize efficiency. Plant Sci. 177, 272–280 (2009).

    Article  CAS  Google Scholar 

  89. Ort, D.R. & Melis, A. Optimizing antenna size to maximize photosynthetic efficiency. Plant Physiol. 155, 79–85 (2011).

    Article  CAS  PubMed  Google Scholar 

  90. Perrine, Z., Negi, S. & Sayre, R.T. Optimization of photosynthetic light energy utilization by microalgae. Algal Res. 1, 134–142 (2012).

    Article  Google Scholar 

  91. Page, L.E., Liberton, M. & Pakrasi, H.B. Reduction of photoautotrophic productivity in the cyanobacterium Synechocystis sp strain PCC 6803 by phycobilisome antenna truncation. Appl. Environ. Microbiol. 78, 6349–6351 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Kunugi, M., Takabayashi, A. & Tanaka, A. Evolutionary changes in chlorophyllide a oxygenase (CAO) structure contribute to the acquisition of a new light-harvesting complex in micromonas. J. Biol. Chem. 288, 19330–19341 (2013).This paper relates the evolution of the Chl b oxygenase with that of the light-harvesting complexes, which is part of a series of papers on the regulation of Chl b synthesis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Bassi, R., Croce, R., Cugini, D. & Sandona, D. Mutational analysis of a higher plant antenna protein provides identification of chromophores bound into multiple sites. Proc. Natl. Acad. Sci. USA 96, 10056–10061 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Forster, T. Intermolecular energy transfer and fluorescence. Ann. Phys.-Leipzig 2, 55–75 (1948).

    Article  CAS  Google Scholar 

  95. Redfield, A.G. in Advances in Magnetic Resonance Vol. 1 (ed. Waugh, J.S.) 1–32 (Academic Press, 1965).

  96. Fassioli, F., Dinshaw, R., Arpin, P.C. & Scholes, G.D. Photosynthetic light harvesting: excitons and coherence. J. R. Soc. Interface 11, 20130901 (2014).This review on the physical aspects of light harvesting explains important concepts such as excitons, (in)coherence and different types of excitation energy transfer. Some basic knowledge of quantum mechanics is required.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Engel, G.S. et al. Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Nature 446, 782–786 (2007).

    Article  CAS  PubMed  Google Scholar 

  98. Hildner, R., Brinks, D., Nieder, J.B., Cogdell, R.J. & van Hulst, N.F. Quantum coherent energy transfer over varying pathways in single light-harvesting complexes. Science 340, 1448–1451 (2013).

    Article  CAS  PubMed  Google Scholar 

  99. Collini, E. et al. Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature. Nature 463, 644–647 (2010).

    Article  CAS  PubMed  Google Scholar 

  100. Tiwari, V., Peters, W.K. & Jonas, D.M. Electronic resonance with anticorrelated pigment vibrations drives photosynthetic energy transfer outside the adiabatic framework. Proc. Natl. Acad. Sci. USA 110, 1203–1208 (2013).

    Article  CAS  PubMed  Google Scholar 

  101. Butkus, V., Zigmantas, D., Valkunas, L. & Abramavicius, D. Vibrational vs. electronic coherences in 2D spectrum of molecular systems. Chem. Phys. Lett. 545, 40–43 (2012).

    Article  CAS  Google Scholar 

  102. Dostál, J. et al. Two-dimensional electronic spectroscopy reveals ultrafast energy diffusion in chlorosomes. J. Am. Chem. Soc. 134, 11611–11617 (2012).

    Article  PubMed  CAS  Google Scholar 

  103. Frigaard, N.U., Larsen, K.L. & Cox, R.P. Spectrochromatography of photosynthetic pigments as a fingerprinting technique for microbial phototrophs. FEMS Microbiol. Ecol. 20, 69–77 (1996).

    Article  CAS  Google Scholar 

  104. Bennett, D.I.G., Amarnath, K. & Fleming, G.R.A. Structure-based model of energy transfer reveals the principles of light harvesting in photosystem II supercomplexes. J. Am. Chem. Soc. 135, 9164–9173 (2013).

    Article  CAS  PubMed  Google Scholar 

  105. Marx, A. & Adir, N. Allophycocyanin and phycocyanin crystal structures reveal facets of phycobilisome assembly. Biochim. Biophys. Acta 1827, 311–318 (2013).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are indebted to C. Büchel (Frankfurt University) for providing the spectra of Chl c and fucoxanthin, M. Chen (University of Sidney) for those of Chls d and f, L. Tian and M. Gwizdala (VU Amsterdam) for the spectra of the phycobylins and M. Ferretti (VU Amsterdam) for that of LH2. R.C. is supported by the Dutch organization for scientific research (NWO), Earth and Life Sciences, via a Vici grant and by the European Research Council via an ERC consolidator grant. The authors are also supported by the Dutch Ministry of ELI through the BioSolar Cells Project.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Roberta Croce or Herbert van Amerongen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Croce, R., van Amerongen, H. Natural strategies for photosynthetic light harvesting. Nat Chem Biol 10, 492–501 (2014). https://doi.org/10.1038/nchembio.1555

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1555

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing