Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Microbial glycan microarrays define key features of host-microbial interactions

Abstract

Genomic approaches continue to provide unprecedented insight into the microbiome, yet host immune interactions with diverse microbiota can be difficult to study. We therefore generated a microbial microarray containing defined antigens isolated from a broad range of microbial flora to examine adaptive and innate immunity. Serological studies with this microarray show that immunoglobulins from multiple mammalian species have unique patterns of reactivity, whereas exposure of animals to distinct microbes induces specific serological recognition. Although adaptive immunity exhibited plasticity toward microbial antigens, immunological tolerance limits reactivity toward self. We discovered that several innate immune galectins show specific recognition of microbes that express self-like antigens, leading to direct killing of a broad range of Gram-negative and Gram-positive microbes. Thus, host protection against microbes seems to represent a balance between adaptive and innate immunity to defend against evolving antigenic determinants while protecting against molecular mimicry.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Production and validation of MGM and recognition of microbial glycan structures by sera.
Figure 2: MGM identifies new bacterial targets for galectin binding and killing.
Figure 3: Bacterial structural database provides new bacterial targets for galectin binding and killing.
Figure 4: Galectins bind and kill a broad range of new bacterial targets.
Figure 5: Expansion of MGM to include Gram-positive and additional Gram-negative microbial antigens.
Figure 6: Galectin binding to eukaryotic cells does not alter cell viability.

Similar content being viewed by others

References

  1. Strugnell, R.A. & Wijburg, O.L. The role of secretory antibodies in infection immunity. Nat. Rev. Microbiol. 8, 656–667 (2010).

    Article  CAS  Google Scholar 

  2. Shanahan, F. The colonic microflora and probiotic therapy in health and disease. Curr. Opin. Gastroenterol. 27, 61–65 (2011).

    Article  Google Scholar 

  3. Gevers, D. et al. The human microbiome project: a community resource for the healthy human microbiome. PLoS Biol. 10, e1001377 (2012).

    Article  CAS  Google Scholar 

  4. Yatsunenko, T. et al. Human gut microbiome viewed across age and geography. Nature 486, 222–227 (2012).

    Article  CAS  Google Scholar 

  5. Arumugam, M. et al. Enterotypes of the human gut microbiome. Nature 473, 174–180 (2011).

    Article  CAS  Google Scholar 

  6. Ley, R.E., Turnbaugh, P.J., Klein, S. & Gordon, J.I. Microbial ecology: human gut microbes associated with obesity. Nature 444, 1022–1023 (2006).

    Article  CAS  Google Scholar 

  7. Turnbaugh, P.J. et al. The human microbiome project. Nature 449, 804–810 (2007).

    Article  CAS  Google Scholar 

  8. Mezzasoma, L. et al. Antigen microarrays for serodiagnosis of infectious diseases. Clin. Chem. 48, 121–130 (2002).

    CAS  PubMed  Google Scholar 

  9. Davies, D.H. et al. Profiling the humoral immune response to infection by using proteome microarrays: high-throughput vaccine and diagnostic antigen discovery. Proc. Natl. Acad. Sci. USA 102, 547–552 (2005).

    Article  CAS  Google Scholar 

  10. van Kooyk, Y. & Rabinovich, G.A. Protein-glycan interactions in the control of innate and adaptive immune responses. Nat. Immunol. 9, 593–601 (2008).

    Article  CAS  Google Scholar 

  11. Costerton, J.W., Irvin, R.T. & Cheng, K.J. The bacterial glycocalyx in nature and disease. Annu. Rev. Microbiol. 35, 299–324 (1981).

    Article  CAS  Google Scholar 

  12. Peterson, P.K. & Quie, P.G. Bacterial surface components and the pathogenesis of infectious diseases. Annu. Rev. Med. 32, 29–43 (1981).

    Article  CAS  Google Scholar 

  13. Wang, D., Liu, S., Trummer, B.J., Deng, C. & Wang, A. Carbohydrate microarrays for the recognition of cross-reactive molecular markers of microbes and host cells. Nat. Biotechnol. 20, 275–281 (2002).

    Article  CAS  Google Scholar 

  14. Parthasarathy, N., DeShazer, D., England, M. & Waag, D.M. Polysaccharide microarray technology for the detection of Burkholderia pseudomallei and Burkholderia mallei antibodies. Diagn. Microbiol. Infect. Dis. 56, 329–332 (2006).

    Article  CAS  Google Scholar 

  15. Parthasarathy, N. et al. Application of carbohydrate microarray technology for the detection of Burkholderia pseudomallei, Bacillus anthracis and Francisella tularensis antibodies. Carbohydr. Res. 343, 2783–2788 (2008).

    Article  CAS  Google Scholar 

  16. Thirumalapura, N.R., Morton, R.J., Ramachandran, A. & Malayer, J.R. Lipopolysaccharide microarrays for the detection of antibodies. J. Immunol. Methods 298, 73–81 (2005).

    Article  CAS  Google Scholar 

  17. Baader, J. et al. Polysaccharide microarrays with a CMOS based signal detection unit. Biosens. Bioelectron. 26, 1839–1846 (2011).

    Article  CAS  Google Scholar 

  18. Blixt, O., Hoffmann, J., Svenson, S. & Norberg, T. Pathogen specific carbohydrate antigen microarrays: a chip for detection of Salmonella O-antigen specific antibodies. Glycoconj. J. 25, 27–36 (2008).

    Article  CAS  Google Scholar 

  19. Kamena, F. et al. Synthetic GPI array to study antitoxic malaria response. Nat. Chem. Biol. 4, 238–240 (2008).

    Article  CAS  Google Scholar 

  20. Wang, D. et al. Photogenerated glycan arrays identify immunogenic sugar moieties of Bacillus anthracis exosporium. Proteomics 7, 180–184 (2007).

    Article  Google Scholar 

  21. Feinberg, H. et al. Structural basis for langerin recognition of diverse pathogen and mammalian glycans through a single binding site. J. Mol. Biol. 405, 1027–1039 (2011).

    Article  CAS  Google Scholar 

  22. Arthur, C.M., Cummings, R.D. & Stowell, S.R. Using glycan microarrays to understand immunity. Curr. Opin. Chem. Biol. 18, 55–61 (2014).

    Article  CAS  Google Scholar 

  23. Knirel, Y.A. et al. Human tandem-repeat-type galectins bind bacterial non-βGal polysaccharides. Glycoconj. J. 31, 7–12 (2014).

    Article  CAS  Google Scholar 

  24. Kocharova, N.A. et al. Structure of the O-polysaccharide of Providencia stuartii O4 containing 4-(N-acetyl-L-aspart-4-yl)amino-4,6-dideoxy-D-glucose. Carbohydr. Res. 339, 195–200 (2004).

    Article  CAS  Google Scholar 

  25. Kocharova, N.A. et al. Structure of the O-polysaccharide of Providencia alcalifaciens O19. Carbohydr. Res. 339, 415–419 (2004).

    Article  CAS  Google Scholar 

  26. Springer, G.F., Horton, R.E. & Forbes, M. Origin of antihuman blood group B agglutinins in germfree chicks. Ann. NY Acad. Sci. 78, 272–275 (1959).

    Article  CAS  Google Scholar 

  27. Springer, G.F. & Horton, R.E. Blood group isoantibody stimulation in man by feeding blood group-active bacteria. J. Clin. Invest. 48, 1280–1291 (1969).

    Article  CAS  Google Scholar 

  28. Kuczynski, J. et al. Experimental and analytical tools for studying the human microbiome. Nat. Rev. Genet. 13, 47–58 (2012).

    Article  CAS  Google Scholar 

  29. Hoffmann, J.A., Kafatos, F.C., Janeway, C.A. & Ezekowitz, R.A. Phylogenetic perspectives in innate immunity. Science 284, 1313–1318 (1999).

    Article  CAS  Google Scholar 

  30. Kohatsu, L., Hsu, D.K., Jegalian, A.G., Liu, F.T. & Baum, L.G. Galectin-3 induces death of Candida species expressing specific β-1,2-linked mannans. J. Immunol. 177, 4718–4726 (2006).

    Article  CAS  Google Scholar 

  31. Pelletier, I. & Sato, S. Specific recognition and cleavage of galectin-3 by Leishmania major through species-specific polygalactose epitope. J. Biol. Chem. 277, 17663–17670 (2002).

    Article  CAS  Google Scholar 

  32. John, C.M. et al. Galectin-3 binds lactosaminylated lipooligosaccharides from Neisseria gonorrhoeae and is selectively expressed by mucosal epithelial cells that are infected. Cell. Microbiol. 4, 649–662 (2002).

    Article  CAS  Google Scholar 

  33. Quattroni, P. et al. Galectin-3 binds Neisseria meningitidis and increases interaction with phagocytic cells. Cell. Microbiol. 14, 1657–1675 (2012).

    Article  CAS  Google Scholar 

  34. Stowell, S.R. et al. Innate immune lectins kill bacteria expressing blood group antigen. Nat. Med. 16, 295–301 (2010).

    Article  CAS  Google Scholar 

  35. Vinogradov, E. et al. Structures of lipopolysaccharides from Klebsiella pneumoniae. Eluicidation of the structure of the linkage region between core and polysaccharide O chain and identification of the residues at the non-reducing termini of the O chains. J. Biol. Chem. 277, 25070–25081 (2002).

    Article  CAS  Google Scholar 

  36. Marth, J.D. & Grewal, P.K. Mammalian glycosylation in immunity. Nat. Rev. Immunol. 8, 874–887 (2008).

    Article  CAS  Google Scholar 

  37. Yother, J. Capsules of Streptococcus pneumoniae and other bacteria: paradigms for polysaccharide biosynthesis and regulation. Annu. Rev. Microbiol. 65, 563–581 (2011).

    Article  CAS  Google Scholar 

  38. Hirabayashi, J. et al. Oligosaccharide specificity of galectins: a search by frontal affinity chromatography. Biochim. Biophys. Acta 1572, 232–254 (2002).

    Article  CAS  Google Scholar 

  39. Klinman, N.R. The “clonal selection hypothesis” and current concepts of B cell tolerance. Immunity 5, 189–195 (1996).

    Article  CAS  Google Scholar 

  40. Medzhitov, R. & Janeway, C.A. Jr. Decoding the patterns of self and nonself by the innate immune system. Science 296, 298–300 (2002).

    Article  CAS  Google Scholar 

  41. Aderem, A. & Ulevitch, R.J. Toll-like receptors in the induction of the innate immune response. Nature 406, 782–787 (2000).

    Article  CAS  Google Scholar 

  42. Kamhawi, S. et al. A role for insect galectins in parasite survival. Cell 119, 329–341 (2004).

    Article  CAS  Google Scholar 

  43. von Gunten, S. et al. Intravenous immunoglobulin contains a broad repertoire of anticarbohydrate antibodies that is not restricted to the IgG2 subclass. J. Allergy Clin. Immunol. 123, 1268–1276 (2009).

    Article  CAS  Google Scholar 

  44. Westphal, O.K.J. Bacterial lipopolysaccharide. Extraction with phenol-water and further applications of the procedure. Methods Carbohydr. Chem. 5, 83–91 (1965).

    CAS  Google Scholar 

  45. Blixt, O. et al. Printed covalent glycan array for ligand profiling of diverse glycan binding proteins. Proc. Natl. Acad. Sci. USA 101, 17033–17038 (2004).

    Article  CAS  Google Scholar 

  46. Stowell, S.R. et al. Ligand reduces galectin-1 sensitivity to oxidative inactivation by enhancing dimer formation. J. Biol. Chem. 284, 4989–4999 (2009).

    Article  CAS  Google Scholar 

  47. Stowell, S.R. et al. Galectin-1, -2, and -3 exhibit differential recognition of sialylated glycans and blood group antigens. J. Biol. Chem. 283, 10109–10123 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the US National Blood Foundation and NIH Loan Repayment Grants to S.R.S.; by R01AI050143 and P01HL107151NIH to J.C.P.; by HL085607, P41GM103694 and R24GM098791 to R.D.C.; and by U54GM62116 to the Consortium for Functional Glycomics. S.V.G. was supported by grants from the Swiss National Science Foundation (no. 310030_135734) and from CSL Behring AG, Bern, Switzerland. L.C.R. was supported by grant no. BEX 9320/13-0 from the CAPES Foundation, Ministry of Education, Brazil. We thank T. Ju, X. Song, Y. Wang and S. Cummings for helpful discussion. We also thank L. Robison and J. Rangarajan for help printing the various versions of the MGM. Consortium for Functional Glycomics array data can be accessed at http://www.functionalglycomics.org/.

Author information

Authors and Affiliations

Authors

Contributions

S.R.S., C.M.A. and R.M. planned the project along with R.D.C. and J.C.P. S.R.S., C.M.A., R.M. and J.H.-M. carried out array experiments and analysis. S.R.S., C.M.A., J.-P.G. and A.J.N. carried out bacterial binding and killing experiments. S.R.S., C.M.A. and L.C.R. carried assays with eukaryotic cells. R.M., O.B., N.R., J.H.-M., S.v.G., D.F.S. and Y.A.K. provided critical bacteria and array reagents and support. S.R.S., C.M.A., J.C.P. and R.D.C. wrote the manuscript, which was additionally edited and commented on by the other authors.

Corresponding authors

Correspondence to James C Paulson or Richard D Cummings.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Figures 1–7 and Supplementary Table 1. (PDF 15301 kb)

Supplementary Data Set 1

Raw data obtained on the original version of the microbial glycan microarray (MGMv1). (XLS 2008 kb)

Supplementary Data Set 2

Raw data obtained on version 4.2 of the Consortium for Functional Glycomics (CFG) mammalian glycan microarray. (XLSX 408 kb)

Supplementary Data Set 3

Raw data obtained on the expanded version of the microbial glycan microarray (MGM). (XLSX 339 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stowell, S., Arthur, C., McBride, R. et al. Microbial glycan microarrays define key features of host-microbial interactions. Nat Chem Biol 10, 470–476 (2014). https://doi.org/10.1038/nchembio.1525

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1525

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology