Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Tethered ligands reveal glutamate receptor desensitization depends on subunit occupancy

Abstract

Cell signaling is often mediated by the binding of multiple ligands to multisubunit receptors. The probabilistic nature and sometimes slow rate of binding encountered with diffusible ligands can impede attempts to determine how the ligand occupancy controls signaling in such protein complexes. We describe a solution to this problem that uses a photoswitched tethered ligand as a 'ligand clamp' to induce rapid and stable binding and unbinding at defined subsets of subunits. We applied the approach to study gating in ionotropic glutamate receptors (iGluRs), ligand-gated ion channels that mediate excitatory neurotransmission and plasticity at glutamatergic synapses in the brain. We probed gating in two kainate-type iGluRs, GluK2 homotetramers and GluK2–GluK5 heterotetramers. Ultrafast (submillisecond) photoswitching of an azobenzene-based ligand on specific subunits provided a real-time measure of gating and revealed that partially occupied receptors can activate without desensitizing. The findings have implications for signaling by locally released and spillover glutamate.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Binding of soluble and tethered ligands.
Figure 2: Fast photoswitching of tethered agonists to probe activation and desensitization in GluK2 homotetramers with sub millisecond precision.
Figure 3: The ligand occupancy determines the extent of desensitization in GluK2 homotetramers.
Figure 4: Subunit-specific activation of GluK2–GluK5 heteromers with MAG and 5-IW.
Figure 5: Subunit-specific contributions to desensitization in GluK2–GluK5 heteromers.
Figure 6: Ligand occupancy, receptor activation and desensitization.

Similar content being viewed by others

References

  1. Dingledine, R., Borges, K., Bowie, D. & Traynelis, S.F. The glutamate receptor ion channels. Pharmacol. Rev. 51, 7–61 (1999).

    CAS  PubMed  Google Scholar 

  2. Traynelis, S.F. et al. Glutamate receptor ion channels: structure, regulation, and function. Pharmacol. Rev. 62, 405–496 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Contractor, A., Mulle, C. & Swanson, G.T. Kainate receptors coming of age: milestones of two decades of research. Trends Neurosci. 34, 154–163 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lerma, J. & Marques, J.M. Kainate receptors in health and disease. Neuron 80, 292–311 (2013).

    Article  CAS  PubMed  Google Scholar 

  5. Mosbacher, J. et al. A molecular determinant for submillisecond desensitization in glutamate receptors. Science 266, 1059–1062 (1994).

    Article  CAS  PubMed  Google Scholar 

  6. Straub, C. & Tomita, S. The regulation of glutamate receptor trafficking and function by TARPs and other transmembrane auxiliary subunits. Curr. Opin. Neurobiol. 22, 488–495 (2012).

    Article  CAS  PubMed  Google Scholar 

  7. Christie, L.A. et al. AMPA receptor desensitization mutation results in severe developmental phenotypes and early postnatal lethality. Proc. Natl. Acad. Sci. USA 107, 9412–9417 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Rosenmund, C., Stern-Bach, Y. & Stevens, C.F. The tetrameric structure of a glutamate receptor channel. Science 280, 1596–1599 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. Sobolevsky, A.I., Rosconi, M.P. & Gouaux, E. X-ray structure, symmetry and mechanism of an AMPA-subtype glutamate receptor. Nature 462, 745–756 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jin, R., Banke, T.G., Mayer, M.L., Traynelis, S.F. & Gouaux, E. Structural basis for partial agonist action at ionotropic glutamate receptors. Nat. Neurosci. 6, 803–810 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Mayer, M.L. Crystal structures of the GluR5 and GluR6 ligand binding cores: molecular mechanisms underlying kainate receptor selectivity. Neuron 45, 539–552 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Stern-Bach, Y., Russo, S., Neuman, M. & Rosenmund, C. A point mutation in the glutamate binding site blocks desensitization of AMPA receptors. Neuron 21, 907–918 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. Sun, Y. et al. Mechanism of glutamate receptor desensitization. Nature 417, 245–253 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Armstrong, N., Jasti, J., Beich-Frandsen, M. & Gouaux, E. Measurement of conformational changes accompanying desensitization in an ionotropic glutamate receptor. Cell 127, 85–97 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Weston, M.C., Schuck, P., Ghosal, A., Rosenmund, C. & Mayer, M.L. Conformational restriction blocks glutamate receptor desensitization. Nat. Struct. Mol. Biol. 13, 1120–1127 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Paternain, A.V., Cohen, A., Stern-Bach, Y. & Lerma, J. A role for extracellular Na+ in the channel gating of native and recombinant kainate receptors. J. Neurosci. 23, 8641–8648 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Plested, A.J. & Mayer, M.L. Structure and mechanism of kainate receptor modulation by anions. Neuron 53, 829–841 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Chaudhry, C., Weston, M.C., Schuck, P., Rosenmund, C. & Mayer, M.L. Stability of ligand-binding domain dimer assembly controls kainate receptor desensitization. EMBO J. 28, 1518–1530 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang, Y., Nayeem, N., Nanao, M.H. & Green, T. Interface interactions modulating desensitization of the kainate-selective ionotropic glutamate receptor subunit GluR6. J. Neurosci. 26, 10033–10042 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dawe, G.B. et al. Defining the structural relationship between kainate-receptor deactivation and desensitization. Nat. Struct. Mol. Biol. 20, 1054–1061 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Smith, T.C. & Howe, J.R. Concentration-dependent substate behavior of native AMPA receptors. Nat. Neurosci. 3, 992–997 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Robert, A. & Howe, J.R. How AMPA receptor desensitization depends on receptor occupancy. J. Neurosci. 23, 847–858 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Robert, A., Irizarry, S.N., Hughes, T.E. & Howe, J.R. Subunit interactions and AMPA receptor desensitization. J. Neurosci. 21, 5574–5586 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bowie, D. & Lange, G.D. Functional stoichiometry of glutamate receptor desensitization. J. Neurosci. 22, 3392–3403 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Swanson, G.T. et al. Differential activation of individual subunits in heteromeric kainate receptors. Neuron 34, 589–598 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Mott, D.D., Rojas, A., Fisher, J.L., Dingledine, R.J. & Benveniste, M. Subunit-specific desensitization of heteromeric kainate receptors. J. Physiol. (Lond.) 588, 683–700 (2010).

    Article  CAS  Google Scholar 

  27. Fisher, J.L. & Mott, D.D. Distinct functional roles of subunits within the heteromeric kainate receptor. J. Neurosci. 31, 17113–17122 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Barberis, A., Sachidhanandam, S. & Mulle, C. GluR6/KA2 kainate receptors mediate slow-deactivating currents. J. Neurosci. 28, 6402–6406 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Heckmann, M., Bufler, J., Franke, C. & Dudel, J. Kinetics of homomeric GluR6 glutamate receptor channels. Biophys. J. 71, 1743–1750 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jayaraman, V. Channel-opening mechanism of a kainate-activated glutamate receptor: kinetic investigations using a laser-pulse photolysis technique. Biochemistry 37, 16735–16740 (1998).

    Article  CAS  PubMed  Google Scholar 

  31. Li, G., Oswald, R.E. & Niu, L. Channel-opening kinetics of GluR6 kainate receptor. Biochemistry 42, 12367–12375 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Bartels, E., Wassermann, N.H. & Erlanger, B.F. Photochromic activators of the acetylcholine receptor. Proc. Natl. Acad. Sci. USA 68, 1820–1823 (1971).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lester, H.A., Krouse, M.E., Nass, M.M., Wassermann, N.H. & Erlanger, B.F. A covalently bound photoisomerizable agonist: comparison with reversibly bound agonists at Electrophorus electroplaques. J. Gen. Physiol. 75, 207–232 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Volgraf, M. et al. Allosteric control of an ionotropic glutamate receptor with an optical switch. Nat. Chem. Biol. 2, 47–52 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Gorostiza, P. et al. Mechanisms of photoswitch conjugation and light activation of an ionotropic glutamate receptor. Proc. Natl. Acad. Sci. USA 104, 10865–10870 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Fehrentz, T., Schönberger, M. & Trauner, D. Optochemical genetics. Angew. Chem. 50, 12156–12182 (2011).

    Article  CAS  Google Scholar 

  37. Levitz, J. et al. Optical control of metabotropic glutamate receptors. Nat. Neurosci. 16, 507–516 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tochitsky, I. et al. Optochemical control of genetically engineered neuronal nicotinic acetylcholine receptors. Nat. Chem. 4, 105–111 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kienzler, M.A. & Reiner, A. et al. A red-shifted, fast-relaxing azobenzene photoswitch for visible light control of an ionotropic glutamate receptor. J. Am. Chem. Soc. 135, 17683–17686 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Herb, A. et al. The KA-2 subunit of excitatory amino acid receptors shows widespread expression in brain and forms ion channels with distantly related subunits. Neuron 8, 775–785 (1992).

    Article  CAS  PubMed  Google Scholar 

  41. Wisden, W. & Seeburg, P.H. A complex mosaic of high-affinity kainate receptors in rat brain. J. Neurosci. 13, 3582–3598 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Contractor, A. et al. Loss of kainate receptor-mediated heterosynaptic facilitation of mossy-fiber synapses in KA2−/− mice. J. Neurosci. 23, 422–429 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gallyas, F. Jr., Ball, S.M. & Molnar, E. Assembly and cell surface expression of KA-2 subunit-containing kainate receptors. J. Neurochem. 86, 1414–1427 (2003).

    Article  CAS  PubMed  Google Scholar 

  44. Ren, Z. et al. Multiple trafficking signals regulate kainate receptor KA2 subunit surface expression. J. Neurosci. 23, 6608–6616 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Nasu-Nishimura, Y. et al. Identification of an endoplasmic reticulum-retention motif in an intracellular loop of the kainate receptor subunit KA2. J. Neurosci. 26, 7014–7021 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Reiner, A., Arant, R.J. & Isacoff, E.Y. Assembly stoichiometry of the GluK2/GluK5 kainate receptor complex. Cell Rep. 1, 234–240 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kumar, J., Schuck, P. & Mayer, M.L. Structure and assembly mechanism for heteromeric kainate receptors. Neuron 71, 319–331 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Swanson, G.T., Green, T. & Heinemann, S.F. Kainate receptors exhibit differential sensitivities to (S)-5-iodowillardiine. Mol. Pharmacol. 53, 942–949 (1998).

    CAS  PubMed  Google Scholar 

  49. Cui, C. & Mayer, M.L. Heteromeric kainate receptors formed by the coassembly of GluR5, GluR6, and GluR7. J. Neurosci. 19, 8281–8291 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Pinheiro, P.S. et al. Selective block of postsynaptic kainate receptors reveals their function at hippocampal mossy fiber aynapses. Cereb. Cortex 23, 323–331 (2013).

    Article  PubMed  Google Scholar 

  51. Ma-Högemeier, Z.L. et al. Oligomerization in the endoplasmic reticulum and intracellular trafficking of kainate receptors are subunit-dependent but not editing-dependent. J. Neurochem. 113, 1403–1415 (2010).

    PubMed  Google Scholar 

  52. Zhou, L.M. et al. (2S,4R)-4-methylglutamic acid (SYM 2081): a selective, high-affinity ligand for kainate receptors. J. Pharmacol. Exp. Ther. 280, 422–427 (1997).

    CAS  PubMed  Google Scholar 

  53. Numano, R. et al. Nanosculpting reversed wavelength sensitivity into a photoswitchable iGluR. Proc. Natl. Acad. Sci. USA 106, 6814–6819 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Everts, I., Villmann, C. & Hollmann, M. N-Glycosylation is not a prerequisite for glutamate receptor function but is essential for lectin modulation. Mol. Pharmacol. 52, 861–873 (1997).

    Article  CAS  PubMed  Google Scholar 

  55. Patneau, D.K., Mayer, M.L., Jane, D.E. & Watkins, J.C. Activation and desensitization of AMPA/kainate receptors by novel derivatives of willardiine. J. Neurosci. 12, 595–606 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Jane, D.E. et al. Synthesis of willardiine and 6-azawillardiine analogs: pharmacological characterization on cloned homomeric human AMPA and kainate receptor subtypes. J. Med. Chem. 40, 3645–3650 (1997).

    Article  CAS  PubMed  Google Scholar 

  57. Jonas, P. Fast application of agonists to isolated membrane patches. In Single-Channel Recording (eds. Sakmann, B. & Neher, E.) 231–242 (Plemum Press, 1995).

  58. Schwarz, G. Kinetic analysis by chemical relaxation methods. Rev. Mod. Phys. 40, 206–218 (1968).

    Article  CAS  Google Scholar 

  59. Colquhoun, D. & Hawkes, A.G. A Q-matrix cookbook. In Single-Channel Recording (eds. Sakmann, B. & Neher, E.) 589–633 (Plenum Press, 1995).

Download references

Acknowledgements

We thank J. Levitz for discussion, and we are grateful to K.M. Partin (Colorado State University) and P.H. Seeburg (Max Planck Institute Heidelberg) for the gift of clones as well as to D. Trauner (Ludwig-Maximilians-Universität München) for the gift of L-MAG-0 and many stimulating discussions. This work was supported by grants to E.Y.I. from the US National Institutes of Health (2PN2EY018241 and U24NS057631) as well as a postdoctoral fellowship to A.R. from the Deutsche Forschungsgemeinschaft (DFG RE 3101/1-1).

Author information

Authors and Affiliations

Authors

Contributions

A.R. and E.Y.I. designed experiments, A.R. performed and analyzed experiments, and A.R. and E.Y.I. wrote the manuscript.

Corresponding author

Correspondence to Ehud Y Isacoff.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Figures 1–11, Supplementary Table 1 and Supplementary Notes 1 and 2. (PDF 4849 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reiner, A., Isacoff, E. Tethered ligands reveal glutamate receptor desensitization depends on subunit occupancy. Nat Chem Biol 10, 273–280 (2014). https://doi.org/10.1038/nchembio.1458

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1458

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing