Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A conserved water-mediated hydrogen bond network defines bosutinib's kinase selectivity

Abstract

Kinase inhibitors are important cancer drugs, but they tend to display limited target specificity, and their target profiles are often challenging to rationalize in terms of molecular mechanism. Here we report that the clinical kinase inhibitor bosutinib recognizes its kinase targets by engaging a pair of conserved structured water molecules in the active site and that many other kinase inhibitors share a similar recognition mechanism. Using the nitrile group of bosutinib as an infrared probe, we show that the gatekeeper residue and one other position in the ATP-binding site control access of the drug to the structured water molecules and that the amino acids found at these positions account for the kinome-wide target spectrum of the drug. Our work highlights the importance of structured water molecules for inhibitor recognition, reveals a new role for the kinase gatekeeper and showcases an effective approach for elucidating the molecular origins of selectivity patterns.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The structure of bosutinib bound to Src shows the drug participating in a water-mediated hydrogen bond network.
Figure 2: Substitutions of the cavity-lining residues modulate bosutinib's engagement in the hydrogen bond network and affect binding.
Figure 3: The probe environment is determined exclusively by the residues that comprise the water-filled cavity.
Figure 4: The water-mediated hydrogen bond network underlies the selectivity profile of bosutinib.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Cohen, P. Protein kinases–the major drug targets of the twenty-first century? Nat. Rev. Drug Discov. 1, 309–315 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Druker, B.J. et al. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N. Engl. J. Med. 344, 1031–1037 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Manning, G., Whyte, D.B., Martinez, R., Hunter, T. & Sudarsanam, S. The protein kinase complement of the human genome. Science 298, 1912–1934 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Wong, S. et al. Sole BCR-ABL inhibition is insufficient to eliminate all myeloproliferative disorder cell populations. Proc. Natl. Acad. Sci. USA 101, 17456–17461 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Demetri, G.D. et al. Efficacy and safety of imatinib mesylate in advanced gastrointestinal stromal tumors. N. Engl. J. Med. 347, 472–480 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Knight, Z.A. & Shokat, K.M. Features of selective kinase inhibitors. Chem. Biol. 12, 621–637 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Fabian, M.A. et al. A small molecule-kinase interaction map for clinical kinase inhibitors. Nat. Biotechnol. 23, 329–336 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Liu, Y. & Gray, N.S. Rational design of inhibitors that bind to inactive kinase conformations. Nat. Chem. Biol. 2, 358–364 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Schindler, T. et al. Structural mechanism for STI-571 inhibition of abelson tyrosine kinase. Science 289, 1938–1942 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Cortes, J.E. et al. Safety and efficacy of bosutinib (SKI-606) in patients (pts) with chronic phase (CP) chronic myeloid leukemia (CML) following resistance or intolerance to imatinib (IM). J. Clin. Oncol. 28, 487–492 (2010).

    Article  Google Scholar 

  11. Campone, M. et al. Phase II study of single-agent bosutinib, a Src/Abl tyrosine kinase inhibitor, in patients with locally advanced or metastatic breast cancer pretreated with chemotherapy. Ann. Oncol. 23, 610–617 (2012).

    Article  CAS  PubMed  Google Scholar 

  12. Blencke, S. et al. Characterization of a conserved structural determinant controlling protein kinase sensitivity to selective inhibitors. Chem. Biol. 11, 691–701 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Liu, Y. et al. Structural basis for selective inhibition of Src family kinases by PP1. Chem. Biol. 6, 671–678 (1999).

    Article  CAS  PubMed  Google Scholar 

  14. Gorre, M.E. et al. Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science 293, 876–880 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Dar, A.C. & Shokat, K.M. The evolution of protein kinase inhibitors from antagonists to agonists of cellular signaling. Annu. Rev. Biochem. 80, 769–795 (2011).

    Article  CAS  PubMed  Google Scholar 

  16. Davis, M.I. et al. Comprehensive analysis of kinase inhibitor selectivity. Nat. Biotechnol. 29, 1046–1051 (2011).

    Article  CAS  PubMed  Google Scholar 

  17. Redaelli, S. et al. Activity of bosutinib, dasatinib, and nilotinib against 18 imatinib-resistant BCR/ABL mutants. J. Clin. Oncol. 27, 469–471 (2009).

    Article  CAS  PubMed  Google Scholar 

  18. Levinson, N.M. & Boxer, S.G. Structural and spectroscopic analysis of the kinase inhibitor bosutinib and an isomer of bosutinib binding to the Abl tyrosine kinase domain. PLoS One 7, e29828 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Shan, Y. et al. A conserved protonation-dependent switch controls drug binding in the Abl kinase. Proc. Natl. Acad. Sci. USA 106, 139–144 (2009).

    Article  CAS  PubMed  Google Scholar 

  20. Hubbard, S.R. Crystal structure of the activated insulin receptor tyrosine kinase in complex with peptide substrate and ATP analog. EMBO J. 16, 5572–5581 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Russo, A.A., Jeffrey, P.D. & Pavletich, N.P. Structural basis of cyclin-dependent kinase activation by phosphorylation. Nat. Struct. Biol. 3, 696–700 (1996).

    Article  CAS  PubMed  Google Scholar 

  22. Lowe, E.D. et al. The crystal structure of a phosphorylase kinase peptide substrate complex: kinase substrate recognition. EMBO J. 16, 6646–6658 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Madhusudan, Akamine, P., Xuong, N.H. & Taylor, S.S. Crystal structure of a transition state mimic of the catalytic subunit of cAMP-dependent protein kinase. Nat. Struct. Biol. 9, 273–277 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Huse, M. & Kuriyan, J. The conformational plasticity of protein kinases. Cell 109, 275–282 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Golovin, A. & Henrick, K. MSDmotif: exploring protein sites and motifs. BMC Bioinformatics 9, 312 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Meijer, L. et al. Inhibition of cyclin-dependent kinases, GSK-3β and CK1 by hymenialdisine, a marine sponge constituent. Chem. Biol. 7, 51–63 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Kothe, M. et al. Selectivity-determining residues in Plk1. Chem. Biol. Drug. Des. 70, 540–546 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Hughes, S. et al. Crystal structure of human CDC7 kinase in complex with its activator DBF4. Nat. Struct. Mol. Biol. 19, 1101–1107 (2012).

    Article  CAS  PubMed  Google Scholar 

  29. Davies, T.G. et al. Structure-based design of a potent purine-based cyclin-dependent kinase inhibitor. Nat. Struct. Biol. 9, 745–749 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Tahtouh, T. et al. Selectivity, cocrystal structures, and neuroprotective properties of leucettines, a family of protein kinase inhibitors derived from the marine sponge alkaloid leucettamine B. J. Med. Chem. 55, 9312–9330 (2012).

    Article  CAS  PubMed  Google Scholar 

  31. Liddle, J. et al. Discovery of GSK143, a highly potent, selective and orally efficacious spleen tyrosine kinase inhibitor. Bioorg. Med. Chem. Lett. 21, 6188–6194 (2011).

    CAS  PubMed  Google Scholar 

  32. Matsuoka, D. & Nakasako, M. Probability distributions of hydration water molecules around polar protein atoms obtained by a database analysis. J. Phys. Chem. B 113, 11274–11292 (2009).

    Article  CAS  PubMed  Google Scholar 

  33. Atwell, S. et al. A novel mode of Gleevec binding is revealed by the structure of spleen tyrosine kinase. J. Biol. Chem. 279, 55827–55832 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Ladbury, J.E. Just add water! The effect of water on the specificity of protein-ligand binding sites and its potential application to drug design. Chem. Biol. 3, 973–980 (1996).

    Article  CAS  PubMed  Google Scholar 

  35. Reimers, J.R. & Hall, L.E. The solvation of acetonitrile. J. Am. Chem. Soc. 121, 3730–3744 (1999).

    Article  CAS  Google Scholar 

  36. Choi, J.H., Oh, K.I., Lee, H., Lee, C. & Cho, M. Nitrile and thiocyanate IR probes: quantum chemistry calculation studies and multivariate least-square fitting analysis. J. Chem. Phys. 128, 134506 (2008).

    Article  PubMed  Google Scholar 

  37. Weiss, E.L., Bishop, A.C., Shokat, K.M. & Drubin, D.G. Chemical genetic analysis of the budding-yeast p21-activated kinase Cla4p. Nat. Cell Biol. 2, 677–685 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. Stamos, J., Sliwkowski, M.X. & Eigenbrot, C. Structure of the epidermal growth factor receptor kinase domain alone and in complex with a 4-anilinoquinazoline inhibitor. J. Biol. Chem. 277, 46265–46272 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. Gajiwala, K.S. et al. Insights into the aberrant activity of mutant EGFR kinase domain and drug recognition. Structure 21, 209–219 (2013).

    Article  CAS  PubMed  Google Scholar 

  40. Park, J.H., Liu, Y., Lemmon, M.A. & Radhakrishnan, R. Erlotinib binds both inactive and active conformations of the EGFR tyrosine kinase domain. Biochem. J. 448, 417–423 (2012).

    Article  CAS  PubMed  Google Scholar 

  41. Hennequin, L.F. et al. N-(5-chloro-1,3-benzodioxol-4-yl)-7-[2-(4-methylpiperazin-1-yl)ethoxy]-5- (tetrahydro-2H-pyran-4-yloxy)quinazolin-4-amine, a novel, highly selective, orally available, dual-specific c-Src/Abl kinase inhibitor. J. Med. Chem. 49, 6465–6488 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Poornima, C.S. & Dean, P.M. Hydration in drug design. 1. Multiple hydrogen-bonding features of water molecules in mediating protein-ligand interactions. J. Comput. Aided Mol. Des. 9, 500–512 (1995).

    Article  CAS  PubMed  Google Scholar 

  43. Fried, S.D., Bagchi, S. & Boxer, S.G. Measuring electrostatic fields in both hydrogen-bonding and non-hydrogen-bonding environments using carbonyl vibrational probes. J. Am. Chem. Soc. 135, 11181–11192 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Seeliger, M.A. et al. High yield bacterial expression of active c-Abl and c-Src tyrosine kinases. Protein Sci. 14, 3135–3139 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Joseph, R.E. & Andreotti, A.H. Bacterial expression and purification of interleukin-2 tyrosine kinase: single step separation of the chaperonin impurity. Protein Expr. Purif. 60, 194–197 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Steichen, J.M. et al. Structural basis for the regulation of protein kinase A by activation loop phosphorylation. J. Biol. Chem. 287, 14672–14680 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Leslie, A.G.W. & Powel, H.R. Evolving Methods for Macromolecular Crystallography. 245, 41–51 ISBN 978-1-4020-6314-5 (2007).

  48. CCP4. The CCP4 Suite: programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 50, 760–763 (1994).

  49. Adams, P.D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta. Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Seeliger, M.A. et al. Equally potent inhibition of c-Src and Abl by compounds that recognize inactive kinase conformations. Cancer Res. 69, 2384–2392 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Emsley, P., Lohkamp, B., Scott, W.G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Steiner, T. The hydrogen bond in the solid state. Angew. Chem. Int. Ed. Engl. 41, 49–76 (2002).

    PubMed  Google Scholar 

  53. Bachrach, S.M. DFT study of [2.2]-, [3.3]-, and [4.4]paracyclophanes: strain energy, conformations, and rotational barriers. J. Phys. Chem. A 115, 2396–2401 (2011).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank N. Jura and P. Littlefield (University of California–San Francisco) for providing purified Her3 and J. Kuriyan and K. Engel (University of California–Berkeley) for providing purified EGFR. We also thank N. Jura and K. Shokat for critical reading of the manuscript and A. Cohen for help with X-ray crystallography. This work is supported by a K99/R00 Pathway to Independence Award (1K99GM102288-01) to N.M.L. and a long-standing grant from the US National Institutes of Health (GM27738) to S.G.B.

Author information

Authors and Affiliations

Authors

Contributions

N.M.L. designed and performed experiments and wrote the manuscript. S.G.B. designed the experiments and wrote the manuscript.

Corresponding author

Correspondence to Nicholas M Levinson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Tables 1 and 2 and Supplementary Figures 1–11. (PDF 2713 kb)

Supplementary Data Set

Structures of protein kinases bound to small-molecule inhibitors in which the inhibitor forms a hydrogen bond to structured water (XLS 36 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Levinson, N., Boxer, S. A conserved water-mediated hydrogen bond network defines bosutinib's kinase selectivity. Nat Chem Biol 10, 127–132 (2014). https://doi.org/10.1038/nchembio.1404

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1404

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer