Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Radical SAM enzyme QueE defines a new minimal core fold and metal-dependent mechanism

Abstract

7-carboxy-7-deazaguanine synthase (QueE) catalyzes a key S-adenosyl-L-methionine (AdoMet)- and Mg2+-dependent radical-mediated ring contraction step, which is common to the biosynthetic pathways of all deazapurine-containing compounds. QueE is a member of the AdoMet radical superfamily, which employs the 5′-deoxyadenosyl radical from reductive cleavage of AdoMet to initiate chemistry. To provide a mechanistic rationale for this elaborate transformation, we present the crystal structure of a QueE along with structures of pre- and post-turnover states. We find that substrate binds perpendicular to the [4Fe-4S]-bound AdoMet, exposing its C6 hydrogen atom for abstraction and generating the binding site for Mg2+, which coordinates directly to the substrate. The Burkholderia multivorans structure reported here varies from all other previously characterized members of the AdoMet radical superfamily in that it contains a hypermodified (β63) protein core and an expanded cluster-binding motif, CX14CX2C.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Biosynthetic pathway for the common precursor of all deazapurines, preQ0.
Figure 2: Overall structure of QueE.
Figure 3: Binding of AdoMet, 6CP, CPH4 and CDG.
Figure 4: Metal ion interactions.
Figure 5: Proposed mechanism for QueE.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Sofia, H.J., Chen, G., Hetzler, B.G., Reyes-Spindola, J.F. & Miller, N.E. Radical SAM, a novel protein superfamily linking unresolved steps in familiar biosynthetic pathways with radical mechanisms: functional characterization using new analysis and information visualization methods. Nucleic Acids Res. 29, 1097–1106 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Pegg, S.C.-H. et al. Leveraging enzyme structure-function relationships for functional inference and experimental design: the structure-function linkage database. Biochemistry 45, 2545–2555 (2006).

    CAS  PubMed  Google Scholar 

  3. Shisler, K.A. & Broderick, J.B. Emerging themes in radical SAM chemistry. Curr. Opin. Struct. Biol. 22, 701–710 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Vey, J.L. & Drennan, C.L. Structural insights into radical generation by the radical SAM superfamily. Chem. Rev. 111, 2487–2506 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Dowling, D.P., Vey, J.L., Croft, A.K. & Drennan, C.L. Structural diversity in the AdoMet radical enzyme superfamily. Biochim. Biophys. Acta. 1824, 1178–1195 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. McCarty, R.M., Somogyi, Á., Lin, G., Jacobsen, N.E. & Bandarian, V. The deazapurine biosynthetic pathway revealed: in vitro enzymatic synthesis of PreQ0 from guanosine 5′-triphosphate in four steps. Biochemistry 48, 3847–3852 (2009).

    CAS  PubMed  Google Scholar 

  7. McCarty, R.M. & Bandarian, V. Biosynthesis of pyrrolopyrimidines. Bioorg. Chem. 43, 15–25 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Cheek, J. & Broderick, J.B. Direct H atom abstraction from spore photoproduct C-6 initiates DNA repair in the reaction catalyzed by spore photoproduct lyase: evidence for a reversibly generated adenosyl radical intermediate. J. Am. Chem. Soc. 124, 2860–2861 (2002).

    CAS  PubMed  Google Scholar 

  9. Frey, P.A. & Reed, G.H. Pyridoxal-5′-phosphate as the catalyst for radical isomerization in reactions of PLP-dependent aminomutases. Biochim. Biophys. Acta. 1814, 1548–1557 (2011).

    CAS  PubMed  Google Scholar 

  10. McCarty, R.M., Krebs, C. & Bandarian, V. Spectroscopic, steady-state kinetic, and mechanistic characterization of the radical SAM enzyme QueE, which catalyzes a complex cyclization reaction in the biosynthesis of 7-deazapurines. Biochemistry 52, 188–198 (2013).

    CAS  PubMed  Google Scholar 

  11. Duschene, K.S., Veneziano, S.E., Silver, S.C. & Broderick, J.B. Control of radical chemistry in the AdoMet radical enzymes. Curr. Opin. Chem. Biol. 13, 74–83 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Layer, G., Moser, J., Heinz, D.W., Jahn, D. & Schubert, W.D. Crystal structure of coproporphyrinogen III oxidase reveals cofactor geometry of radical SAM enzymes. EMBO J. 22, 6214–6224 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Berkovitch, F., Nicolet, Y., Wan, J.T., Jarrett, J.T. & Drennan, C.L. Crystal structure of biotin synthase, an S-adenosylmethionine–dependent radical enzyme. Science 303, 76–79 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Vey, J.L. et al. Structural basis for glycyl radical formation by pyruvate formate-lyase activating enzyme. Proc. Natl. Acad. Sci. USA 105, 16137–16141 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Holm, L. & Rosenström, P. Dali server: conservation mapping in 3D. Nucleic Acids Res. 38, W545–W549 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Farrar, C.E. & Jarrett, J.T. Protein residues that control the reaction trajectory in S-adenosylmethionine radical enzymes: mutagenesis of asparagine 153 and aspartate 155 in Escherichia coli biotin synthase. Biochemistry 48, 2448–2458 (2009).

    CAS  PubMed  Google Scholar 

  17. Harding, M.M. Small revisions to predicted distances around metal sites in proteins. Acta Crystallogr. D Biol. Crystallogr. 62, 678–682 (2006).

    PubMed  Google Scholar 

  18. Zheng, H., Chruszcz, M., Lasota, P., Lebioda, L. & Minor, W. Data mining of metal ion environments present in protein structures. J. Inorg. Biochem. 102, 1765–1776 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Walden, H. et al. Tiny TIM: a small, tetrameric, hyperthermostable triosephosphate isomerase. J. Mol. Biol. 306, 745–757 (2001).

    CAS  PubMed  Google Scholar 

  20. Nagano, N., Orengo, C.A. & Thornton, J.M. One fold with many functions: the evolutionary relationships between TIM barrel families based on their sequences, structures and functions. J. Mol. Biol. 321, 741–765 (2002).

    CAS  PubMed  Google Scholar 

  21. Blair, D.E. & van Aalten, D.M.F. Structures of Bacillus subtilis PdaA, a family 4 carbohydrate esterase, and a complex with N-acetyl-glucosamine. FEBS Lett. 570, 13–19 (2004).

    CAS  PubMed  Google Scholar 

  22. Romier, C., Reuter, K., Suck, D. & Ficner, R. Crystal structure of tRNA-guanine transglycosylase: RNA modification by base exchange. EMBO J. 15, 2850–2857 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Huang, K., Li, Z., Jia, Y., Dunaway-Mariano, D. & Herzberg, O. Helix swapping between two α/β barrels: crystal structure of phosphoenolpyruvate mutase with bound Mg2+-oxalate. Structure 7, 539–548 (1999).

    CAS  PubMed  Google Scholar 

  24. Takagi, H. et al. Crystal structure of the ribonuclease P protein Ph1877p from hyperthermophilic archaeon Pyrococcus horikoshii OT3. Biochem. Biophys. Res. Commun. 319, 787–794 (2004).

    CAS  PubMed  Google Scholar 

  25. Teplyakov, A. et al. Crystal structure of the Escherichia coli YcdX protein reveals a trinuclear zinc active site. Proteins 51, 315–318 (2003).

    CAS  PubMed  Google Scholar 

  26. Goldman, A., Ollis, D.L. & Steitz, T.A. Crystal structure of muconate lactonizing enzyme at 3 Å resolution. J. Mol. Biol. 194, 143–153 (1987).

    CAS  PubMed  Google Scholar 

  27. Neidhart, D.J. et al. Mechanism of the reaction catalyzed by mandelate racemase. 2. Crystal structure of mandelate racemase at 2.5-Å resolution: identification of the active site and possible catalytic residues. Biochemistry 30, 9264–9273 (1991).

    CAS  PubMed  Google Scholar 

  28. Gromiha, M.M., Pujadas, G., Magyar, C., Selvaraj, S. & Simon, I. Locating the stabilizing residues in (α/β)8 barrel proteins based on hydrophobicity, long-range interactions, and sequence conservation. Proteins 55, 316–329 (2004).

    CAS  PubMed  Google Scholar 

  29. Chatterjee, A. et al. Reconstitution of ThiC in thiamine pyrimidine biosynthesis expands the radical SAM superfamily. Nat. Chem. Biol. 4, 758–765 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. McGlynn, S.E. et al. Identification and characterization of a novel member of the radical AdoMet enzyme superfamily and implications for the biosynthesis of the Hmd hydrogenase active site cofactor. J. Bacteriol. 192, 595–598 (2010).

    CAS  PubMed  Google Scholar 

  31. Paraskevopoulou, C., Fairhurst, S.A., Lowe, D.J., Brick, P. & Onesti, S. The elongator subunit Elp3 contains a Fe4S4 cluster and binds S-adenosylmethionine. Mol. Microbiol. 59, 795–806 (2006).

    CAS  PubMed  Google Scholar 

  32. Marsh, E.N. & Melendez, G.D.R. Adenosylcobalamin enzymes: theory and experiment begin to converge. Biochim. Biophys. Acta 1824, 1154–1164 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Toraya, T., Honda, S. & Mori, K. Coenzyme B12–dependent diol dehydratase is a potassium ion–requiring calcium metalloenzyme: evidence that the substrate-coordinated metal ion is calcium. Biochemistry 49, 7210–7217 (2010).

    CAS  PubMed  Google Scholar 

  34. Shibata, N. et al. Crystal structures of ethanolamine ammonia-lyase complexed with coenzyme B12 analogs and substrates. J. Biol. Chem. 285, 26484–26493 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Kamachi, T., Doitomi, K., Takahata, M., Toraya, T. & Yoshizawa, K. Catalytic roles of the metal ion in the substrate-binding site of coenzyme B12-dependent diol dehydratase. Inorg. Chem. 50, 2944–2952 (2011).

    CAS  PubMed  Google Scholar 

  36. Frey, P.A. Lysine 2,3-aminomutase: is adenosylmethionine a poor man's adenosylcobalamin? FASEB J. 7, 662–670 (1993).

    CAS  PubMed  Google Scholar 

  37. Goldman, P.J., Grove, T.L., Booker, S.J. & Drennan, C.L. X-ray analysis of butirosin biosynthetic enzyme BtrN redefines structural motifs for AdoMet radical chemistry. Proc. Natl. Acad. Sci. USA 110, 15949–15954 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Frazzon, J., Fick, J.R. & Dean, D.R. Biosynthesis of iron-sulphur clusters is a complex and highly conserved process. Biochem. Soc. Trans. 30, 680–685 (2002).

    CAS  PubMed  Google Scholar 

  39. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data in oscillation mode. Macromol. Crystallogr. A. 276, 307–326 (1997).

    CAS  Google Scholar 

  40. Terwilliger, T.C. et al. Decision-making in structure solution using Bayesian estimates of map quality: the PHENIX AutoSol wizard. Acta Crystallogr. D Biol. Crystallogr. 65, 582–601 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Vonrhein, C., Blanc, E., Roversi, P. & Bricogne, G. Automated structure solution with autoSHARP. Methods Mol. Biol. 364, 215–230 (2007).

    CAS  PubMed  Google Scholar 

  42. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    PubMed  Google Scholar 

  43. Schröder, G.F., Levitt, M. & Brunger, A.T. Super-resolution biomolecular crystallography with low-resolution data. Nature 464, 1218–1222 (2010).

    PubMed  PubMed Central  Google Scholar 

  44. Brünger, A.T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr. 54, 905–921 (1998).

    PubMed  Google Scholar 

  45. Brunger, A.T. Version 1.2 of the Crystallography and NMR system. Nat. Protoc. 2, 2728–2733 (2007).

    CAS  PubMed  Google Scholar 

  46. Adams, P.D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. French, S. & Wilson, K. On the treatment of negative intensity observations. Acta Crystallogr. A 34, 517–525 (1978).

    Google Scholar 

  48. Winn, M.D. et al. Overview of the CCP4 suite and current developments. Acta Crystallogr. D Biol. Crystallogr. 67, 235–242 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Painter, J. & Merritt, E.A. Optimal description of a protein structure in terms of multiple groups undergoing TLS motion. Acta Crystallogr. D Biol. Crystallogr. 62, 439–450 (2006).

    PubMed  Google Scholar 

  50. Painter, J. & Merritt, E.A. TLSMD web server for the generation of multi-group TLS models. J. Appl. Crystallogr. 39, 109–111 (2006).

    CAS  Google Scholar 

  51. Laskowski, R.A., MacArthur, M.W., Moss, D.S. & Thornton, J.M. PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 26, 283–291 (1993).

    CAS  Google Scholar 

  52. Baker, N.A., Sept, D., Joseph, S., Holst, M.J. & McCammon, J.A. Electrostatics of nanosystems: application to microtubules and the ribosome. Proc. Natl. Acad. Sci. USA 98, 10037–10041 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Bond, C.S. TopDraw: a sketchpad for protein structure topology cartoons. Bioinformatics 19, 311–312 (2003).

    CAS  PubMed  Google Scholar 

  54. Lopes, C.T. et al. Cytoscape Web: an interactive web-based network browser. Bioinformatics 26, 2347–2348 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by US National Institutes of Health grant GM72623 (V.B.) with Administrative Supplement GM72623 S01 to V.B. for the collaboration between V.B. and C.L.D.; a Career Award in Biomedical Sciences from the Burroughs Wellcome Fund (V.B.); and a Biological Chemistry Training Grant (GM008804) (R.M.M.). Additionally, C.L.D. is a Howard Hughes Medical Investigator. This work is based on research conducted at beamline X25 of the National Synchrotron Light Source (NSLS) and at the Advanced Photon Source (APS) on the Northeastern Collaborative Access Team (NE-CAT) beamlines. Financial support from NSLS comes from the Offices of Biological and Environmental Research and of Basic Energy Sciences of the US Department of Energy (DOE) and from the National Center for Research Resources (P41RR012408) and the National Institute of General Medical Sciences at the National Institutes of Health (P41GM103473). NE-CAT at APS is supported by grants from the National Center for Research Resources (5P41RR015301-10) and the National Institute of General Medical Sciences at the National Institutes of Health (8 P41 GM103403-10). APS is an Office of Science User Facility operated for the US DOE Office of Science by Argonne National Laboratory and is also supported by the US DOE under contract number DE-AC02-06CH11357. We thank G.L. Holliday and P. Babbitt (University of California San Francisco) and the Enzyme Function Initiative for their analysis of sequences in the AdoMet radical enzyme superfamily, which are available from the Structure Function Linkage Database (http://sfld.rbvi.ucsf.edu/django/superfamily/29/).

Author information

Authors and Affiliations

Authors

Contributions

D.P.D. and C.L.D. designed and performed the crystallography experiments. N.A.B., R.M.M., A.P.Y. and V.B. designed and carried out the biochemical experiments. D.P.D., N.A.B., V.B. and C.L.D. contributed to the writing of the manuscript.

Corresponding author

Correspondence to Catherine L Drennan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Figures 1–12 and Supplementary Tables 1–4. (PDF 7398 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dowling, D., Bruender, N., Young, A. et al. Radical SAM enzyme QueE defines a new minimal core fold and metal-dependent mechanism. Nat Chem Biol 10, 106–112 (2014). https://doi.org/10.1038/nchembio.1426

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1426

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing