Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Targeted protein destabilization reveals an estrogen-mediated ER stress response

Abstract

Accumulation of unfolded proteins within the endoplasmic reticulum (ER) of eukaryotic cells leads to an unfolded protein response (UPR) that either restores homeostasis or commits the cells to apoptosis. Tools traditionally used to study the UPR are proapoptotic and thus confound analysis of long-term cellular responses to ER stress. Here, we describe an ER-localized HaloTag (ERHT) protein that can be conditionally destabilized using a small-molecule hydrophobic tag (HyT36). Treatment of ERHT-expressing cells with HyT36 induces acute, resolvable ER stress that results in transient UPR activation without induction of apoptosis. Transcriptome analysis of late-stage responses to this UPR stimulus reveals a link between UPR activity and estrogen signaling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The ERHT system.
Figure 2: HyT36 treatment causes destabilization of the ERHT protein.
Figure 3: HyT36 treatment of ERHT cells induces a UPR response comparable to tunicamycin and thapsigargin.
Figure 4: Destabilization of the ERHT protein leads to acute ER stress.
Figure 5: The acute ER stress induced by HyT36 does not result in apoptosis.
Figure 6: Identification of estrogen signaling as a late-stage response to UPR activation.

Similar content being viewed by others

References

  1. Shoulders, M.D. et al. Stress-independent activation of XBP1s and/or ATF6 reveals three functionally diverse ER proteostasis environments. Cell Rep. 3, 1279–1292 (2013).

    Article  CAS  Google Scholar 

  2. Smith, M.H., Ploegh, H.L. & Weissman, J.S. Road to ruin: targeting proteins for degradation in the endoplasmic reticulum. Science 334, 1086–1090 (2011).

    Article  CAS  Google Scholar 

  3. Bernasconi, R., Galli, C., Kokame, K. & Molinari, M. Autoadaptive ER-associated degradation defines a preemptive unfolded protein response pathway. Mol. Cell 52, 783–793 (2013).

    Article  CAS  Google Scholar 

  4. Mori, K. Signalling pathways in the unfolded protein response: development from yeast to mammals. J. Biochem. 146, 743–750 (2009).

    Article  CAS  Google Scholar 

  5. Tirasophon, W., Welihinda, A.A. & Kaufman, R.J. A stress response pathway from the endoplasmic reticulum to the nucleus requires a novel bifunctional protein kinase/endoribonuclease (Ire1p) in mammalian cells. Genes Dev. 12, 1812–1824 (1998).

    Article  CAS  Google Scholar 

  6. Korennykh, A.V. et al. The unfolded protein response signals through high-order assembly of Ire1. Nature 457, 687–693 (2009).

    Article  CAS  Google Scholar 

  7. Calfon, M. et al. IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature 415, 92–96 (2002).

    Article  CAS  Google Scholar 

  8. Walter, P. & Ron, D. The unfolded protein response: from stress pathway to homeostatic regulation. Science 334, 1081–1086 (2011).

    Article  CAS  Google Scholar 

  9. Coelho, D.S. et al. Xbp1-independent Ire1 signaling is required for photoreceptor differentiation and rhabdomere morphogenesis in Drosophila. Cell Rep. 5, 791–801 (2013).

    Article  CAS  Google Scholar 

  10. Han, D. et al. IRE1α kinase activation modes control alternate endoribonuclease outputs to determine divergent cell fates. Cell 138, 562–575 (2009).

    Article  CAS  Google Scholar 

  11. Tabas, I. & Ron, D. Integrating the mechanisms of apoptosis induced by endoplasmic reticulum stress. Nat. Cell Biol. 13, 184–190 (2011).

    Article  CAS  Google Scholar 

  12. Haze, K., Yoshida, H., Yanagi, H., Yura, T. & Mori, K. Mammalian transcription factor ATF6 is synthesized as a transmembrane protein and activated by proteolysis in response to endoplasmic reticulum stress. Mol. Biol. Cell 10, 3787–3799 (1999).

    Article  CAS  Google Scholar 

  13. Bertolotti, A., Zhang, Y., Hendershot, L.M., Harding, H.P. & Ron, D. Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nat. Cell Biol. 2, 326–332 (2000).

    Article  CAS  Google Scholar 

  14. Liu, C.Y., Schroder, M. & Kaufman, R.J. Ligand-independent dimerization activates the stress response kinases IRE1 and PERK in the lumen of the endoplasmic reticulum. J. Biol. Chem. 275, 24881–24885 (2000).

    Article  CAS  Google Scholar 

  15. Harding, H.P. et al. Regulated translation initiation controls stress-induced gene expression in mammalian cells. Mol. Cell 6, 1099–1108 (2000).

    Article  CAS  Google Scholar 

  16. Harding, H.P., Zhang, Y., Bertolotti, A., Zeng, H. & Ron, D. Perk is essential for translational regulation and cell survival during the unfolded protein response. Mol. Cell 5, 897–904 (2000).

    Article  CAS  Google Scholar 

  17. Han, J. et al. ER-stress–induced transcriptional regulation increases protein synthesis leading to cell death. Nat. Cell Biol. 15, 481–490 (2013).

    Article  CAS  Google Scholar 

  18. Hetz, C. The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nat. Rev. Mol. Cell Biol. 13, 89–102 (2012).

    Article  CAS  Google Scholar 

  19. Lytton, J., Westlin, M. & Hanley, M.R. Thapsigargin inhibits the sarcoplasmic or endoplasmic reticulum Ca-ATPase family of calcium pumps. J. Biol. Chem. 266, 17067–17071 (1991).

    CAS  PubMed  Google Scholar 

  20. Takatsuki, A., Arima, K. & Tamura, G. Tunicamycin, a new antibiotic. I. Isolation and characterization of tunicamycin. J. Antibiot. (Tokyo) 24, 215–223 (1971).

    Article  CAS  Google Scholar 

  21. Helms, J.B. & Rothman, J.E. Inhibition by brefeldin A of a Golgi membrane enzyme that catalyses exchange of guanine nucleotide bound to ARF. Nature 360, 352–354 (1992).

    Article  CAS  Google Scholar 

  22. Carlberg, M. et al. Short exposures to tunicamycin induce apoptosis in SV40-transformed but not in normal human fibroblasts. Carcinogenesis 17, 2589–2596 (1996).

    Article  CAS  Google Scholar 

  23. Kaufman, R.J. Stress signaling from the lumen of the endoplasmic reticulum: coordination of gene transcriptional and translational controls. Genes Dev. 13, 1211–1233 (1999).

    Article  CAS  Google Scholar 

  24. Lawless, M.W. et al. Activation of endoplasmic reticulum-specific stress responses associated with the conformational disease Z α1-antitrypsin deficiency. J. Immunol. 172, 5722–5726 (2004).

    Article  CAS  Google Scholar 

  25. Hidvegi, T., Schmidt, B.Z., Hale, P. & Perlmutter, D.H. Accumulation of mutant α1-antitrypsin Z in the endoplasmic reticulum activates caspases-4 and -12, NFκB, and BAP31 but not the unfolded protein response. J. Biol. Chem. 280, 39002–39015 (2005).

    Article  CAS  Google Scholar 

  26. Mori, A. et al. Derlin-1 overexpression ameliorates mutant SOD1-induced endoplasmic reticulum stress by reducing mutant SOD1 accumulation. Neurochem. Int. 58, 344–353 (2011).

    Article  CAS  Google Scholar 

  27. Nadanaka, S., Yoshida, H., Kano, F., Murata, M. & Mori, K. Activation of mammalian unfolded protein response is compatible with the quality control system operating in the endoplasmic reticulum. Mol. Biol. Cell 15, 2537–2548 (2004).

    Article  CAS  Google Scholar 

  28. Sellmyer, M.A., Chen, L.C., Egeler, E.L., Rakhit, R. & Wandless, T.J. Intracellular context affects levels of a chemically dependent destabilizing domain. PLoS ONE 7, e43297 (2012).

    Article  CAS  Google Scholar 

  29. Neklesa, T.K. et al. A bidirectional system for the dynamic small molecule control of intracellular fusion proteins. ACS Chem. Biol. 8, 2293–2300 (2013).

    Article  CAS  Google Scholar 

  30. Tae, H.S. et al. Identification of hydrophobic tags for the degradation of stabilized proteins. ChemBioChem 13, 538–541 (2012).

    Article  CAS  Google Scholar 

  31. Neklesa, T.K. et al. Small-molecule hydrophobic tagging-induced degradation of HaloTag fusion proteins. Nat. Chem. Biol. 7, 538–543 (2011).

    Article  CAS  Google Scholar 

  32. Munro, S. & Pelham, H.R. A C-terminal signal prevents secretion of luminal ER proteins. Cell 48, 899–907 (1987).

    Article  CAS  Google Scholar 

  33. Pelham, H.R. Evidence that luminal ER proteins are sorted from secreted proteins in a post-ER compartment. EMBO J. 7, 913–918 (1988).

    Article  CAS  Google Scholar 

  34. Manders, E. Measurement of colocalization of objects in dual-color confocal images. J. Microsc. 169, 375–382 (1993).

    Article  Google Scholar 

  35. Gardner, B.M. & Walter, P. Unfolded proteins are Ire1-activating ligands that directly induce the unfolded protein response. Science 333, 1891–1894 (2011).

    Article  CAS  Google Scholar 

  36. Wang, Y. et al. Activation of ATF6 and an ATF6 DNA binding site by the endoplasmic reticulum stress response. J. Biol. Chem. 275, 27013–27020 (2000).

    CAS  PubMed  Google Scholar 

  37. Lu, M., Mira-y-Lopez, R., Nakajo, S., Nakaya, K. & Jing, Y. Expression of estrogen receptor α, retinoic acid receptor α and cellular retinoic acid binding protein II genes is coordinately regulated in human breast cancer cells. Oncogene 24, 4362–4369 (2005).

    Article  CAS  Google Scholar 

  38. Li, Q. et al. Identification and implantation stage-specific expression of an interferon-α–regulated gene in human and rat endometrium. Endocrinology 142, 2390–2400 (2001).

    Article  CAS  Google Scholar 

  39. Thompson, C.J., Tam, N.N., Joyce, J.M., Leav, I. & Ho, S.M. Gene expression profiling of testosterone and estradiol-17 β-induced prostatic dysplasia in Noble rats and response to the antiestrogen ICI 182,780. Endocrinology 143, 2093–2105 (2002).

    Article  CAS  Google Scholar 

  40. Mercier, I. et al. Genetic ablation of caveolin-1 drives estrogen-hypersensitivity and the development of DCIS-like mammary lesions. Am. J. Pathol. 174, 1172–1190 (2009).

    Article  CAS  Google Scholar 

  41. Han, X. et al. Role of estrogen receptor α and β in preserving hippocampal function during aging. J. Neurosci. 33, 2671–2683 (2013).

    Article  CAS  Google Scholar 

  42. Pedram, A., Razandi, M., Aitkenhead, M., Hughes, C.C. & Levin, E.R. Integration of the non-genomic and genomic actions of estrogen. Membrane-initiated signaling by steroid to transcription and cell biology. J. Biol. Chem. 277, 50768–50775 (2002).

    Article  CAS  Google Scholar 

  43. Levin, E.R. Bidirectional signaling between the estrogen receptor and the epidermal growth factor receptor. Mol. Endocrinol. 17, 309–317 (2003).

    Article  CAS  Google Scholar 

  44. Ding, L. et al. Ligand-independent activation of estrogen receptor α by XBP-1. Nucleic Acids Res. 31, 5266–5274 (2003).

    Article  CAS  Google Scholar 

  45. Papa, L. & Germain, D. Estrogen receptor mediates a distinct mitochondrial unfolded protein response. J. Cell Sci. 124, 1396–1402 (2011).

    Article  CAS  Google Scholar 

  46. Haynes, C.M. & Ron, D. The mitochondrial UPR—protecting organelle protein homeostasis. J. Cell Sci. 123, 3849–3855 (2010).

    Article  CAS  Google Scholar 

  47. Siegelin, M.D. et al. Exploiting the mitochondrial unfolded protein response for cancer therapy in mice and human cells. J. Clin. Invest. 121, 1349–1360 (2011).

    Article  Google Scholar 

  48. Kang, B.H. et al. Preclinical characterization of mitochondria-targeted small molecule hsp90 inhibitors, gamitrinibs, in advanced prostate cancer. Clin. Cancer Res. 16, 4779–4788 (2010).

    Article  CAS  Google Scholar 

  49. Sin, N. et al. Total synthesis of the potent proteasome inhibitor epoxomicin: a useful tool for understanding proteasome biology. Bioorg. Med. Chem. Lett. 9, 2283–2288 (1999).

    Article  CAS  Google Scholar 

  50. Krämer, A., Green, J., Pollard, J. Jr. & Tugendreich, S. Causal analysis approaches in Ingenuity Pathway Analysis. Bioinformatics 30, 523–530 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

We wish to acknowledge financial support from the US National Institutes of Health (R01AI084140, R01CA083049 and T32GM067543) and the Department of Defense through the National Defense Science and Engineering Graduate Fellowship Program.

Author information

Authors and Affiliations

Authors

Contributions

K.R. and D.J.N. contributed equally as first authors to this work. C.M.C. conceived the idea. K.R. generated the ERHT construct and cell line and performed the immunoprecipitation and immunoblotting studies. D.J.N., K.R., Y.V.S. and A.A. performed the qPCR experiments. D.J.N. analyzed the RNA-seq data. Y.V.S. and D.J.N. assessed compound cytotoxicity. C.Z. and Y.V.S. performed the ERAD experiments. D.J.N., K.R. and C.M.C. wrote the paper.

Corresponding author

Correspondence to Craig M Crews.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Figures 1–23 and Supplementary Tables 1–3. (PDF 2195 kb)

Supplementary Data Set 1

Mean fold upregulation of genes from two independent mRNA-sequencing experiments: full gene list used for analysis using Ingenuity Pathway Analysis (IPA) is provided. (XLSX 1181 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raina, K., Noblin, D., Serebrenik, Y. et al. Targeted protein destabilization reveals an estrogen-mediated ER stress response. Nat Chem Biol 10, 957–962 (2014). https://doi.org/10.1038/nchembio.1638

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1638

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing