Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Solid-to-fluid DNA transition inside HSV-1 capsid close to the temperature of infection

A Corrigendum to this article was published on 20 January 2015

This article has been updated

Abstract

DNA in the human Herpes simplex virus type 1 (HSV-1) capsid is packaged to a tight density. This leads to tens of atmospheres of internal pressure responsible for the delivery of the herpes genome into the cell nucleus. In this study we show that, despite its liquid crystalline state inside the capsid, the DNA is fluid-like, which facilitates its ejection into the cell nucleus during infection. We found that the sliding friction between closely packaged DNA strands, caused by interstrand repulsive interactions, is reduced by the ionic environment of epithelial cells and neurons susceptible to herpes infection. However, variations in the ionic conditions corresponding to neuronal activity can restrict DNA mobility in the capsid, making it more solid-like. This can inhibit intranuclear DNA release and interfere with viral replication. In addition, the temperature of the human host (37 °C) induces a disordering transition of the encapsidated herpes genome, which reduces interstrand interactions and provides genome mobility required for infection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: AFM nano-indentation analysis of encapsidated DNA mobility.
Figure 2: Effect of cellular ionic conditions on the mobility of encapsidated DNA.
Figure 3: Solid-to-fluid like DNA transition inside the HSV-1 capsid close to the temperature of infection.
Figure 4: Solution SAXS analysis of intracapsid DNA structure.

Similar content being viewed by others

Change history

  • 04 November 2014

    In the version of this article initially published, a callout made to Figure 3a should have referred to Figure 4a in the first paragraph of the subsection entitled "Solid-to-fluid DNA transition inside the HSV-1 capsid" on page 864. The error has been corrected in the HTML and PDF versions of the article.

References

  1. Roizmann, B., Knipe, D.M. & Whitley, R.J. in Fields Virology, Vol. 2 (eds. Knipe, D.M. & Howley, P.M.) 2501–2601 (Lippencott-Raven, New York, Y.Y., 2007).

  2. Whitley, R.J. & Roizman, B. Herpes simplex virus infections. Lancet 357, 1513–1518 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Coen, D.M. in Alpha Herpesviruses: Molecular and Cellular Biology (ed. Sandri-Goldin, R.M.) 361–381 (Caister Academic Press, Norfolk, 2006).

  4. Gilbert, C., Bestman-Smith, J. & Boivin, G. Resistance of herpesviruses to antiviral drugs: clinical impacts and molecular mechanisms. Drug Resist. Updat. 5, 88–114 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Flint, S.J. Principles of virology: molecular biology, pathogenesis, and control of animal viruses (ASM Press, Washington, D.C.; 2004).

  6. Evilevitch, A., Lavelle, L., Knobler, C.M., Raspaud, E. & Gelbart, W.M. Osmotic pressure inhibition of DNA ejection from phage. Proc. Natl. Acad. Sci. USA 100, 9292–9295 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. São-José, C., de Frutos, M., Raspaud, E., Santos, M.A. & Tavares, P. Pressure built by DNA packing inside virions: enough to drive DNA ejection in vitro, largely insufficient for delivery into the bacterial cytoplasm. J. Mol. Biol. 374, 346–355 (2007).

    Article  PubMed  Google Scholar 

  8. Leforestier, A. et al. Bacteriophage T5 DNA ejection under pressure. J. Mol. Biol. 384, 730–739 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. Smith, D.E. et al. The bacteriophage ϕ29 portal motor can package DNA against a large internal force. Nature 413, 748–752 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Booy, F.P. et al. Liquid-crystalline, phage-like packing of encapsidated DNA in herpes simplex virus. Cell 64, 1007–1015 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bauer, D.W., Huffman, J.B., Homa, F.L. & Evilevitch, A. Herpes virus genome, the pressure is on. J. Am. Chem. Soc. 135, 11216–11221 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tzlil, S., Kindt, J.T., Gelbart, W.M. & Ben-Shaul, A. Forces and pressures in DNA packaging and release from viral capsids. Biophys. J. 84, 1616–1627 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhou, Z.H., Chen, D.H., Jakana, J., Rixon, F.J. & Chiu, W. Visualization of tegument-capsid interactions and DNA in intact herpes simplex virus type 1 virions. J. Virol. 73, 3210–3218 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Berndsen, Z.T., Keller, N., Grimes, S., Jardine, P.J. & Smith, D.E. Nonequilibrium dynamics and ultraslow relaxation of confined DNA during viral packaging. Proc. Natl. Acad. Sci. USA 111, 8345–8350 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Riemer, S.C. & Bloomfield, V.A. Packaging of DNA in bacteriophage heads: some considerations on energetics. Biopolymers 17, 785–794 (1978).

    Article  CAS  PubMed  Google Scholar 

  16. Earnshaw, W.C. & Harrison, S.C. DNA arrangement in isometric phage heads. Nature 268, 598–602 (1977).

    Article  CAS  PubMed  Google Scholar 

  17. Homa, F.L. & Brown, J.C. Capsid assembly and DNA packaging in herpes simplex virus. Rev. Med. Virol. 7, 107–122 (1997).

    Article  CAS  PubMed  Google Scholar 

  18. Ivanovska, I., Wuite, G., Jonsson, B. & Evilevitch, A. Internal DNA pressure modifies stability of WT phage. Proc. Natl. Acad. Sci. USA 104, 9603–9608 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Purohit, P.K., Kondev, J. & Phillips, R. Mechanics of DNA packaging in viruses. Proc. Natl. Acad. Sci. USA 100, 3173–3178 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Odijk, T. Statics and dynamics of condensed DNA within phages and globules. Philos. Trans. A Math Phys. Eng. Sci. 362, 1497–1517 (2004).

    Article  PubMed  Google Scholar 

  21. Gabashvili, I.S. & Grosberg, A. Dynamics of double stranded DNA reptation from bacteriophage. J. Biomol. Struct. Dyn. 9, 911–920 (1992).

    Article  CAS  PubMed  Google Scholar 

  22. Evilevitch, A. et al. Effects of salts on internal DNA pressure and mechanical properties of phage capsids. J. Mol. Biol. 405, 18–23 (2011).

    Article  CAS  PubMed  Google Scholar 

  23. Qiu, X. et al. Salt-dependent DNA-DNA spacings in intact bacteriophage lambda reflect relative importance of DNA self-repulsion and bending energies. Phys. Rev. Lett. 106, 028102 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Evilevitch, A. et al. Effects of salt concentrations and bending energy on the extent of ejection of phage genomes. Biophys. J. 94, 1110–1120 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Geggier, S., Kotlyar, A. & Vologodskii, A. Temperature dependence of DNA persistence length. Nucleic Acids Res. 39, 1419–1426 (2011).

    Article  CAS  PubMed  Google Scholar 

  26. Purves, D. Neuroscience (Sinauer Associates, Sunderland, Massachusetts, 2012).

  27. Cameron, I.L., Pool, T.B. & Smith, N.K. An X-ray microanalysis survey of the concentration of elements in the cytoplasm of different mammalian cell types. J. Cell. Physiol. 101, 493–501 (1979).

    Article  CAS  PubMed  Google Scholar 

  28. Cameron, I.L., Smith, N.K., Pool, T.B. & Sparks, R.L. Intracellular concentration of sodium and other elements as related to mitogenesis and oncogenesis in vivo. Cancer Res. 40, 1493–1500 (1980).

    CAS  PubMed  Google Scholar 

  29. Nagy, I.Z., Lustyik, G., Nagy, V.Z., Zarandi, B. & Bertoni-Freddari, C. Intracellular Na+:K+ ratios in human cancer cells as revealed by energy dispersive X-ray microanalysis. J. Cell Biol. 90, 769–777 (1981).

    Article  CAS  PubMed  Google Scholar 

  30. Roos, W.H. et al. Scaffold expulsion and genome packaging trigger stabilization of herpes simplex virus capsids. Proc. Natl. Acad. Sci. USA 106, 9673–9678 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Grayson, P., Han, L., Winther, T. & Phillips, R. Real-time observations of single bacteriophage lambda DNA ejections in vitro. Proc. Natl. Acad. Sci. USA 104, 14652–14657 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. de Frutos, M., Letellier, L. & Raspaud, E. DNA ejection from bacteriophage T5: analysis of the kinetics and energetics. Biophys. J. 88, 1364–1370 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Hanhijärvi, K.J., Ziedaite, G., Pietila, M.K., Haeggstrom, E. & Bamford, D.H. DNA ejection from an archaeal virus—a single-molecule approach. Biophys. J. 104, 2264–2272 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Kindt, J., Tzlil, S., Ben-Shaul, A. & Gelbart, W.M. DNA packaging and ejection forces in bacteriophage. Proc. Natl. Acad. Sci. USA 98, 13671–13674 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lander, G.C. et al. DNA bending-induced phase transition of encapsidated genome in phage lambda. Nucleic Acids Res. 41, 4518–4524 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Parsegian, V.A., Rand, R.P., Fuller, N.L. & Rau, D.C. Osmotic stress for the direct measurement of intermolecular forces. Methods Enzymol. 127, 400–416 (1986).

    Article  CAS  PubMed  Google Scholar 

  37. Rau, D.C. & Parsegian, V.A. Direct measurement of temperature-dependent solvation forces between DNA double helices. Biophys. J. 61, 260–271 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Livolant, F. & Leforestier, A. Condensed phases of DNA: structures and phase transitions. Prog. Polym. Sci. 21, 1115–1164 (1996).

    Article  CAS  Google Scholar 

  39. Livolant, F. Ordered phases of DNA in vivo and in vitro. Physica A 176, 117–137 (1991).

    Article  CAS  Google Scholar 

  40. Pelta, J. Jr., Durand, D., Doucet, J. & Livolant, F. DNA mesophases induced by spermidine: structural properties and biological implications. Biophys. J. 71, 48–63 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Todd, B.A. & Rau, D.C. Interplay of ion binding and attraction in DNA condensed by multivalent cations. Nucleic Acids Res. 36, 501–510 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Gibson, W. & Roizman, B. Compartmentalization of spermine and spermidine in the herpes simplex virion. Proc. Natl. Acad. Sci. USA 68, 2818–2821 (1971).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Igarashi, K. & Kashiwagi, K. Polyamines: mysterious modulators of cellular functions. Biochem. Biophys. Res. Commun. 271, 559–564 (2000).

    Article  CAS  PubMed  Google Scholar 

  44. Davis, R.H., Morris, D.R. & Coffino, P. Sequestered end products and enzyme regulation: the case of ornithine decarboxylase. Microbiol. Rev. 56, 280–290 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Hendrix, R.W. Lambda II (Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory, 1983).

  46. Ojala, P.M., Sodeik, B., Ebersold, M.W., Kutay, U. & Helenius, A. Herpes simplex virus type 1 entry into host cells: reconstitution of capsid binding and uncoating at the nuclear pore complex in vitro. Mol. Cell. Biol. 20, 4922–4931 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhang, X. et al. Dengue structure differs at the temperatures of its human and mosquito hosts. Proc. Natl. Acad. Sci. USA 110, 6795–6799 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kol, N. et al. A stiffness switch in human immunodeficiency virus. Biophys. J. 92, 1777–1783 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. Kornyshev, A.A., Lee, D.J., Leikin, S. & Wynveen, A. Structure and interactions of biological helices. Rev. Mod. Phys. 79, 943–996 (2007).

    Article  CAS  Google Scholar 

  50. Zhang, C.X. et al. Neuronal activity regulates viral replication of herpes simplex virus type 1 in the nervous system. J. Neurovirol. 11, 256–264 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Doceul, V., Hollinshead, M., van der Linden, L. & Smith, G.L. Repulsion of superinfecting virions: a mechanism for rapid virus spread. Science 327, 873–876 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Elliott, G. & O'Hare, P. Live-cell analysis of a green fluorescent protein-tagged herpes simplex virus infection. J. Virol. 73, 4110–4119 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Ivanovska, I.L. et al. Bacteriophage capsids: tough nanoshells with complex elastic properties. Proc. Natl. Acad. Sci. USA 101, 7600–7605 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hutter, J.L. & Bechhoefer, J. Calibration of atomic-force microscope tips. Rev. Sci. Instrum. 64, 1868–1873 (1993).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge T. Liu and I. Shefer for their substantial help with the manuscript preparation. We also thank B. Jönsson for discussions that have been inspiring for this work. We are grateful to G. Berry, M. Widom, P. LeDuc, M. Deserno and L. Walker for providing critically important feedback on data analysis. We acknowledge J. Shaw, B. Pittenger and M. Thompson from Bruker Nano Surfaces Division for outstanding support with AFM measurements. We thank A. Templeton for help with proofreading. The SAXS experiments were performed at beamline 12ID-B of the Advanced Photon Source at Argonne National Laboratory. We acknowledge the Advanced Photon Source, which is an Office of Science User Facility operated by Argonne National Laboratory for the US Department of Energy under contract no. DE-AC02-06CH11357. This work was supported by the Swedish Research Council, VR grant 622- 2008-726 (A.E.) and US National Science Foundation grant CHE-1152770 (A.E.). Support was also provided by the Public Health Service Grant AI060836 from the US National Institutes of Health (NIH) (F.L.H.) and by the McWilliams Fellowship in the Mellon College of Science (to U.S.). This work was partially supported by the Intramural Research Program of the National Institutes of Child Health and Human Development-NIH (to D.R.).

Author information

Authors and Affiliations

Authors

Contributions

U.S.-U. performed experiments, analyzed data and wrote the paper. D.L. performed experiments, analyzed data and provided analytical tools. X.Z. provided analytical tools and analyzed data. J.B.H. provided reagents and analyzed data. F.L.H. provided reagents and analyzed data. D.R. performed experiments, analyzed data and provided analytical tools. A.E. analyzed data, wrote the paper, provided analytical tools and provided reagents.

Corresponding author

Correspondence to Alex Evilevitch.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Figures 1 and 2. (PDF 1181 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sae-Ueng, U., Li, D., Zuo, X. et al. Solid-to-fluid DNA transition inside HSV-1 capsid close to the temperature of infection. Nat Chem Biol 10, 861–867 (2014). https://doi.org/10.1038/nchembio.1628

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1628

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing