Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Direct evidence for a covalent ene adduct intermediate in NAD(P)H-dependent enzymes

Abstract

The pyridine nucleotides NADH and NADPH (NAD(P)H) are ubiquitous redox coenzymes that are present in all living cells. Although about 16% of all characterized enzymes use pyridine nucleotides as hydride donors or acceptors during catalysis, a detailed understanding of how the hydride is transferred between NAD(P)H and the corresponding substrate is lacking for many enzymes. Here we present evidence for a new mechanism that operates during enzymatic hydride transfers using crotonyl-CoA carboxylase/reductase (Ccr) as a case study. We observed a covalent ene intermediate between NADPH and the substrate, crotonyl-CoA, using NMR, high-resolution MS and stopped-flow spectroscopy. Preparation of the ene intermediate further allowed direct access to the catalytic cycle of other NADPH-dependent enzymes—including those from type II fatty acid biosynthesis—in an unprecedented way, suggesting that formation of NAD(P)H ene intermediates is a more general principle in catalysis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Spectrophotometric assay of Ccr activity identifies a transient intermediate during the reduction reaction.
Figure 2: NMR characterization of the transient intermediate.
Figure 3: Purification and characterization of the ene adduct.
Figure 4: Possible reaction mechanisms for the formation of the ene adduct.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Westheimer, F.H., Fisher, H.F., Conn, E.E. & Vennesland, B. The enzymatic transfer of hydrogen from alcohol to Dpn. J. Am. Chem. Soc. 73, 2403–2408 (1951).

    Article  CAS  Google Scholar 

  2. Cheng, J.P., Lu, Y., Zhu, X.Q. & Mu, L.J. Energetics of multistep versus one-step hydride transfer reactions of reduced nicotinamide adenine dinucleotide (NADH) models with organic cations and p-quinones. J. Org. Chem. 63, 6108–6114 (1998).

    Article  CAS  Google Scholar 

  3. Westheimer, F.H. Mechanism of action of the pyridine nucleotides. in Pyridine Nucleotide Coenzymes: Chemical, Biochemical, and Medical aspects Vol. 2 (eds. Dolphin, D., Poulson, R. & Avramovic, O.) 253–322 (Wiley, New York, 1986).

  4. Abeles, R.H., Hutton, R.F. & Westheimer, F.H. The reduction of thioketones by a model for a coenzyme. J. Am. Chem. Soc. 79, 712–716 (1957).

    Article  CAS  Google Scholar 

  5. Wu, Y.D. & Houk, K.N. Theoretical transition structures for hydride transfer to methyleniminium ion from methylamine and dihydropyridine. On the nonlinearity of hydride transfers. J. Am. Chem. Soc. 109, 2226–2227 (1987).

    Article  CAS  Google Scholar 

  6. Bugg, T. Introduction to Enzyme and Coenzyme Chemistry (Wiley-Blackwell, Oxford, 2012).

  7. Hamilton, G.A. in Progress in Bioorganic Chemistry Vol. 1 (eds. Kaiser, E.T. & Kezdy, F.J.) 83–157 (1971).

  8. MacInnes, I., Nonhebel, D.C., Orszulik, S.T. & Suckling, C.J. On the mechanism of hydrogen transfer by nicotinamide coenzymes and alcohol-dehydrogenase. J. Chem. Soc., Perkin Trans. 1 1983, 2777–2779 (1983).

    Article  Google Scholar 

  9. Hedlund, J., Jornvall, H. & Persson, B. Subdivision of the MDR superfamily of medium-chain dehydrogenases/reductases through iterative hidden Markov model refinement. BMC Bioinformatics 11, 534 (2010).

    Article  Google Scholar 

  10. Agarwal, P.K., Webb, S.P. & Hammes-Schiffer, S. Computational studies of the mechanism for proton and hydride transfer in liver alcohol dehydrogenase. J. Am. Chem. Soc. 122, 4803–4812 (2000).

    Article  CAS  Google Scholar 

  11. Bahnson, B.J., Park, D.H., Kim, K., Plapp, B.V. & Klinman, J.P. Unmasking of hydrogen tunneling in the horse liver alcohol dehydrogenase reaction by site-directed mutagenesis. Biochemistry 32, 5503–5507 (1993).

    Article  CAS  Google Scholar 

  12. Roston, D. & Kohen, A. Elusive transition state of alcohol dehydrogenase unveiled. Proc. Natl. Acad. Sci. USA 107, 9572–9577 (2010).

    Article  CAS  Google Scholar 

  13. Youn, B. et al. Mechanistic and structural studies of apoform, binary, and ternary complexes of the Arabidopsis alkenal double bond reductase At5g16970. J. Biol. Chem. 281, 40076–40088 (2006).

    Article  CAS  Google Scholar 

  14. Porté, S. et al. Kinetic and structural evidence of the alkenal/one reductase specificity of human ζ-crystallin. Cell Mol. Life Sci. 68, 1065–1077 (2011).

    Article  Google Scholar 

  15. Schlegel, B.P., Ratnam, K. & Penning, T.M. Retention of NADPH-linked quinone reductase activity in an aldo-keto reductase following mutation of the catalytic tyrosine. Biochemistry 37, 11003–11011 (1998).

    Article  CAS  Google Scholar 

  16. Airenne, T.T. et al. Structure-function analysis of enoyl thioester reductase involved in mitochondrial maintenance. J. Mol. Biol. 327, 47–59 (2003).

    Article  CAS  Google Scholar 

  17. Chen, Z.J. et al. Structural enzymological studies of 2-enoyl thioester reductase of the human mitochondrial FAS II pathway: new insights into its substrate recognition properties. J. Mol. Biol. 379, 830–844 (2008).

    Article  CAS  Google Scholar 

  18. Wallace, K.K. et al. Purification of crotonyl-CoA reductase from Streptomyces collinus and cloning, sequencing and expression of the corresponding gene in Escherichia coli. Eur. J. Biochem. 233, 954–962 (1995).

    Article  CAS  Google Scholar 

  19. Erb, T.J. et al. Synthesis of C5-dicarboxylic acids from C2-units involving crotonyl-CoA carboxylase/reductase: the ethylmalonyl-CoA pathway. Proc. Natl. Acad. Sci. USA 104, 10631–10636 (2007).

    Article  CAS  Google Scholar 

  20. Erb, T.J., Brecht, V., Fuchs, G., Muller, M. & Alber, B.E. Carboxylation mechanism and stereochemistry of crotonyl-CoA carboxylase/reductase, a carboxylating enoyl-thioester reductase. Proc. Natl. Acad. Sci. USA 106, 8871–8876 (2009).

    Article  CAS  Google Scholar 

  21. Wilson, M.C. & Moore, B.S. Beyond ethylmalonyl-CoA: the functional role of crotonyl-CoA carboxylase/reductase homologs in expanding polyketide diversity. Nat. Prod. Rep. 29, 72–86 (2012).

    Article  CAS  Google Scholar 

  22. Erb, T.J. et al. Synthesis of C5-dicarboxylic acids from C2-units involving crotonyl-CoA carboxylase/reductase: The ethylmalonyl-CoA pathway. Proc. Natl. Acad. Sci. USA 104, 10631–10636 (2007).

    Article  CAS  Google Scholar 

  23. Quade, N., Huo, L., Rachid, S., Heinz, D.W. & Muller, R. Unusual carbon fixation gives rise to diverse polyketide extender units. Nat. Chem. Biol. 8, 117–124 (2012).

    Article  CAS  Google Scholar 

  24. Yoo, H.G. et al. Characterization of 2-octenoyl-CoA carboxylase/reductase utilizing pteB from Streptomyce avermitilis. Biosci. Biotechnol. Biochem. 75, 1191–1193 (2011).

    Article  CAS  Google Scholar 

  25. Torkko, J.M. et al. Candida tropicalis Etr1p and Saccharomyces cerevisiae Ybr026p (Mrf1′p), 2-enoyl thioester reductases essential for mitochondrial respiratory competence. Mol. Cell Biol. 21, 6243–6253 (2001).

    Article  CAS  Google Scholar 

  26. Todd, J.D., Curson, A.R., Sullivan, M.J., Kirkwood, M. & Johnston, A.W. The Ruegeria pomeroyi acuI gene has a role in DMSP catabolism and resembles yhdH of E. coli and other bacteria in conferring resistance to acrylate. PLoS ONE 7, e35947 (2012).

    Article  CAS  Google Scholar 

  27. Schneider, K., Asao, M., Carter, M.S. & Alber, B.E. Rhodobacter sphaeroides uses a reductive route via propionyl coenzyme A to assimilate 3-hydroxypropionate. J. Bacteriol. 194, 225–232 (2012).

    Article  CAS  Google Scholar 

  28. Asao, M. & Alber, B.E. Acrylyl-CoA reductase, an enzyme involved in the assimilation of 3-hydroxypropionate by Rhodobacter sphaeroides. J. Bacteriol. 195, 4716–4725 (2013).

    Article  CAS  Google Scholar 

  29. Alder, K., Pascher, F. & Schmitz, A. Absorption of maleic acid-anhydride and azodicarbon acid-ester in simple unsaturated carbohydrogens. Information on the substitution processes in the allyl position. Chem. Ber. 76, 27–53 (1943).

    Article  Google Scholar 

  30. Pindur, U. & Schneider, G.H. Pericyclic key reactions in biological-systems and biomimetic syntheses. Chem. Soc. Rev. 23, 409–415 (1994).

    Article  CAS  Google Scholar 

  31. Lamb, A.L. Pericyclic reactions catalyzed by chorismate-utilizing enzymes. Biochemistry 50, 7476–7483 (2011).

    Article  CAS  Google Scholar 

  32. Chook, Y.M., Gray, J.V., Ke, H. & Lipscomb, W.N. The monofunctional chorismate mutase from Bacillus subtilis. Structure determination of chorismate mutase and its complexes with a transition state analog and prephenate, and implications for the mechanism of the enzymatic reaction. J. Mol. Biol. 240, 476–500 (1994).

    Article  CAS  Google Scholar 

  33. DeClue, M.S., Baldridge, K.K., Kunzler, D.E., Kast, P. & Hilvert, D. Isochorismate pyruvate lyase: a pericyclic reaction mechanism? J. Am. Chem. Soc. 127, 15002–15003 (2005).

    Article  CAS  Google Scholar 

  34. Libby, R.D. & Mehl, R.A. Characterization of covalent Ene adduct intermediates in “hydride equivalent” transfers in a dihydropyridine model for NADH reduction reactions. Bioorg. Chem. 40, 57–66 (2012).

    Article  CAS  Google Scholar 

  35. Jacobson, B.M. Aromatization of 1,4-cyclohexadiene with tetracyanoethylene-Ene reaction. J. Am. Chem. Soc. 102, 886–887 (1980).

    Article  CAS  Google Scholar 

  36. Sulzbach, R.A. & Iqbal, F.M. Addition of acrylonitrile to derivatives of 1,4-dihydropyridine. Angew. Chem. Int. Ed. Engl. 10, 733 (1971).

    Article  CAS  Google Scholar 

  37. Inagaki, S. & Hirabayashi, Y. Mechanism of NAD(P)H reduction reactions. Bull. Chem. Soc. Jpn. 50, 3360–3364 (1977).

    Article  CAS  Google Scholar 

  38. Rozwarski, D.A., Grant, G.A., Barton, D.H., Jacobs, W.R. Jr. & Sacchettini, J.C. Modification of the NADH of the isoniazid target (InhA) from Mycobacterium tuberculosis. Science 279, 98–102 (1998).

    Article  CAS  Google Scholar 

  39. Bull, H.G. et al. Mechanism-based inhibition of human steroid 5 α-reductase by finasteride: enzyme-catalyzed formation of NADP-dihydrofinasteride, a potent bisubstrate analog inhibitor. J. Am. Chem. Soc. 118, 2359–2365 (1996).

    Article  CAS  Google Scholar 

  40. Wolfenden, R. Transition state analogues for enzyme catalysis. Nature 223, 704–705 (1969).

    Article  CAS  Google Scholar 

  41. Kapmeyer, H., Pfleiderer, G. & Trommer, W.E. A transition state analogue for two pyruvate metabolizing enzymes, lactate dehydrogenase and alanine dehydrogenase. Biochemistry 15, 5024–5028 (1976).

    Article  CAS  Google Scholar 

  42. Harden, A. & Young, W.J. The alcoholic ferment of yeast-juice. Proc. R. Soc. Lond., B 77, 405–420 (1906).

    Article  CAS  Google Scholar 

  43. Simon, E.J. & Shemin, D. The preparation of S-succinyl coenzyme-A. J. Am. Chem. Soc. 75, 2520 (1953).

    Article  CAS  Google Scholar 

  44. Peyraud, R. et al. Demonstration of the ethylmalonyl-CoA pathway by using 13C-metabolomics. Proc. Natl. Acad. Sci. USA 106, 4846–4851 (2009).

    Article  CAS  Google Scholar 

  45. Dawson, R.M.C., Elliott, D.C., Elliott, W.H. & Jones, K.M. Data for Biochemical Research 3rd edn (Clarendon Press, Oxford, 1986).

  46. Studier, F.W. Protein production by auto-induction in high-density shaking cultures. Protein Expr. Purif. 41, 207–234 (2005).

    Article  CAS  Google Scholar 

  47. Kuntze, K. et al. Enzymes involved in the anaerobic degradation of meta-substituted halobenzoates. Mol. Microbiol. 82, 758–769 (2011).

    Article  CAS  Google Scholar 

  48. Wu, L. et al. Quantitative analysis of the microbial metabolome by isotope dilution mass spectrometry using uniformly C-13–labeled cell extracts as internal standards. Anal. Biochem. 336, 164–171 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a Schweizerische Nationalfonds–Ambizione grant (PZ00P3_136828/1) and an ETH fellowship to T.J.E. We thank B.M. Jaun for valuable discussions and critical inspection of NMR data, A.J. Rosenthal for suggestions during the early phase of this work and S. Weidenweber and U. Ermler for discussions about a structural understanding of Ccr. We acknowledge K. Hiltunen, J. Torkko and A. Kastaniotis (University of Oulu, Finland) for providing the etr1p gene, G. Sturm (Albert-Ludwigs-University of Freiburg, Germany) for providing plasmid pGS5, A. Essig, M. Künzler and M. Aebi (ETH Zurich, Switzerland) for help with the Pichia pastoris expression system, R. Kissner and C. Molina (ETH Zurich, Switzerland) for stopped-flow experiments, S. Weidenweber and C. Vogel for the initial cloning of the Ccr and Etr1p constructs, respectively, and National BioResource Project (NBRP)-E. coli at the National Institute of Genetics (NIG) for providing E. coli strain JW3222.

Author information

Authors and Affiliations

Authors

Contributions

R.G.R. and T.J.E. conceived and designed all experiments, with the exception of the NMR experiments, which were designed together with M.-O.E., and the MS analyses, which were designed together with P.K. and J.A.V. NMR experiments were performed by R.G.R. and M.-O.E. MS experiments were performed by R.G.R. and P.K. Enzyme kinetic assays and stopped-flow measurements, as well as purification of the intermediate, were performed by R.G.R. and D.M.P. R.G.R. and T.J.E. wrote the paper.

Corresponding author

Correspondence to Tobias J Erb.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Figures 1–13 and Supplementary Tables 1–3. (PDF 6066 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosenthal, R., Ebert, MO., Kiefer, P. et al. Direct evidence for a covalent ene adduct intermediate in NAD(P)H-dependent enzymes. Nat Chem Biol 10, 50–55 (2014). https://doi.org/10.1038/nchembio.1385

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1385

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing