Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Small-molecule ligand induces nucleotide flipping in (CAG)n trinucleotide repeats

Abstract

DNA trinucleotide repeats, particularly CXG, are common within the human genome. However, expansion of trinucleotide repeats is associated with a number of disorders, including Huntington disease, spinobulbar muscular atrophy and spinocerebellar ataxia1,2,3,4. In these cases, the repeat length is known to correlate with decreased age of onset and disease severity5,6. Repeat expansion of (CAG)n, (CTG)n and (CGG)n trinucleotides may be related to the increased stability of alternative DNA hairpin structures consisting of CXG-CXG triads with X-X mismatches7,8,9,10,11. Small-molecule ligands that selectively bound to CAG repeats could provide an important probe for determining repeat length and an important tool for investigating the in vivo repeat extension mechanism. Here we report that napthyridine-azaquinolone (NA, 1) is a ligand for CAG repeats and can be used as a diagnostic tool for determining repeat length. We show by NMR spectroscopy that binding of NA to CAG repeats induces the extrusion of a cytidine nucleotide from the DNA helix.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Binding of NA to the CAG-CAG triad.
Figure 2: NMR structural analysis of NA-CAG-CAG complex.
Figure 3: NA-CAG-CAG complex.
Figure 4: NA binding to the (CAG)n repeats.
Figure 5: SPR analyses of the (CAG)n repeats by NA-immobilized sensor surface.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Ashley, C.T. & Warren, S.T. Trinucleotide repeat expansion and human disease. Annu. Rev. Genet. 29, 703–728 (1995).

    Article  CAS  Google Scholar 

  2. Paulson, H.L. & Fishbeck, K.H. Trinucleotide repeats in neurogenetic disorders. Annu. Rev. Neurosci. 19, 79–107 (1996).

    Article  CAS  Google Scholar 

  3. Wells, R.D. & Warren, S.T. (eds). (1998) Genetic Instabilities and Hereditary Neurological Diseases. Academic Press, San Diego.

    Google Scholar 

  4. McMurray, C.T. DNA secondary structure: A common and causative factor for expansion in human disease. Proc. Natl. Acad. Sci. USA 96, 1823–1825 (1999).

    Article  CAS  Google Scholar 

  5. Duyao, M.P. et al. Trinucleotide repeat length: instability and age of onset in Huntington's disease. Nat. Genet. 4, 387–392 (1993).

    Article  CAS  Google Scholar 

  6. Mangiarini, L. et al. Instability of highly expanded CAG repeats in mice transgenic for the Huntington's disease mutation. Nat. Genet. 15, 197–200 (1997).

    Article  CAS  Google Scholar 

  7. Gacy, A.M., Goellner, G., Juranic, N., Macura, S. & McMurray, C.T. Trinucleotide repeats that expand in human disease form hairpin structures in vitro. Cell 81, 533–540 (1995).

    Article  CAS  Google Scholar 

  8. Mitas, M. et al. Hairpin properties of single-stranded-DNA containing a GC-rich triplet repeat: (CTG)15 . Nucleic Acids Res. 23, 1050–1059 (1995).

    Article  CAS  Google Scholar 

  9. Petruska, J., Arnheim, N. & Goodman, M.F. Stability of intrastrand hairpin structures formed by the CAG/CTG class of DNA triplet repeats associated with neurological diseases. Nucleic Acids Res. 24, 1992–1998 (1996).

    Article  CAS  Google Scholar 

  10. Ohshima, K. & Wells, R.D. Hairpin formation during DNA synthesis primer realignment in vitro triplet repeat sequences from human hereditary disease genes. J. Biol. Chem. 272, 16798–16806 (1997).

    Article  CAS  Google Scholar 

  11. Freudenreich, C.H., Stavenhagen, J.B. & Zakian, V.A. Stability of a CTG/CAG trinucleotide repeat in yeast is dependent on its orientation in the genome. Mol. Cell. Biol. 17, 2090–2098 (1997).

    Article  CAS  Google Scholar 

  12. Nakatani, K., Sando, S. & Saito, I. Scanning of guanine-guanine mismatches in DNA by synthetic ligands using surface plasmon resonance. Nat. Biotechnol. 19, 51–55 (2001).

    Article  CAS  Google Scholar 

  13. Nakatani, K., Sando, S., Kumasawa, H., Kikuchi, J. & Saito, I. Recognition of guanine-guanine mismatches by the dimeric form of 2-amino-1,8-naphthyridine. J. Am. Chem. Soc. 123, 12650–12657 (2001).

    Article  CAS  Google Scholar 

  14. Hagihara, S. et al. Detection of guanine-adenine mismatches by surface plasmon resonance sensor carrying naphthyridine-azaquinolone hybrid on the surface. Nucleic Acids Res. 32, 278–286 (2004).

    Article  CAS  Google Scholar 

  15. Kobori, A., Horie, S., Suda, H., Saito, I. & Nakatani, K. The SPR sensor detecting cytosine-cytosine mismatches. J. Am. Chem. Soc. 126, 557–562 (2004).

    Article  CAS  Google Scholar 

  16. Syvänen, A-C. Accessing genetic variation: genotyping single nucleotide polymorphisms. Nat. Rev. Genet. 2, 930–942 (2001).

    Article  Google Scholar 

  17. Nakatani, K. Chemistry challenge in SNP typing. ChemBioChem 5, 1623–1633 (2004).

    Article  CAS  Google Scholar 

  18. Han, X. & Gao, X. Sequence specific recognition of ligand-DNA complexes studied by NMR. Curr. Med. Chem. 8, 551–581 (2001).

    Article  CAS  Google Scholar 

  19. Wuthrich, K. NMR of proteins and nucleic acids. (John Wiley & Sons, Inc., New York, 1986).

  20. Wijmenga, S.S. & van Buuren, B.N. The use of NMR methods for conformational studies of nucleic acids. Prog. Nucl. Magn. Reson. Spectrosc. 32, 287–387 (1998).

    Article  CAS  Google Scholar 

  21. Roberts, R.J. & Cheng, X. Base flipping. Annu. Rev. Biochem. 67, 181–198 (1998).

    Article  CAS  Google Scholar 

  22. Brockman, J.M., Nelson, B.P. & Corn, R.M. Surface plasmon resonance imaging measurements of ultrathin organic films. Annu. Rev. Phys. Chem. 51, 41–63 (2000).

    Article  CAS  Google Scholar 

  23. Smith, E.A. et al. Chemically induced hairpin formation in DNA monolayers. J. Am. Chem. Soc. 124, 6810–6811 (2002).

    Article  CAS  Google Scholar 

  24. Hashem, V.I. et al. Chemotherapeutic deletion of CTG repeats in lymphoblast cells from DM1 patients. Nucleic Acids Res. 32, 6334–6346 (2004).

    Article  CAS  Google Scholar 

  25. Zimmer, D.P. & Crothers, D.M. NMR of enzymatically synthesized uniformly 13C15N-labeled DNA oligonucleotides. Proc. Natl. Acad. Sci. USA 92, 3091–3095 (1995).

    Article  CAS  Google Scholar 

  26. Liu, H., Spielmann, H.P., Ulyanov, N.B., Wemmer, D.E. & James, T.L. Interproton distance bounds from 2D NOE intensities: effect of experimental noise and peak integration errors. J. Biomol. NMR 6, 390–402 (1995).

    Article  CAS  Google Scholar 

  27. Brunger, A.T. et al. Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998).

    Article  CAS  Google Scholar 

  28. Kyo, M. et al. Evaluation of MafG interaction with Maf recognition element arrays by surface plasmon resonance imaging technique. Genes Cells 9, 153–164 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank T.L. James and M. Shimizu for valuable discussions. This work was partially supported by a Grant in Aid for Scientific Research (A) from the Japan Society for the Promotion of Science to K.N., Health and Labour Sciences Research Grants for Research on Advanced Medical Technology from the Ministry of Health, Labour and Welfare to K.N. and C.K., and CREST, Japan Science and Technology Agency to K.N.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kazuhiko Nakatani or Chojiro Kojima.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

1H one-dimensional imino proton resonances. (PDF 117 kb)

Supplementary Fig. 2

1H 2D NOESY spectrum of 0.8 mM unlabeled 2:1 NA–CAG–CAG complex. (PDF 170 kb)

Supplementary Fig. 3

NOE constrains used for the structure determination of the 2:1 NA–CAG–CAG complex. (PDF 642 kb)

Supplementary Fig. 4

Discrimination of two possible orientations of NA in the 2:1 complex of NA bound to CAG–CAG triad. (PDF 99 kb)

Supplementary Fig. 5

Confirmation of hairpin formation on (CAG)n upon NA binding. (PDF 168 kb)

Supplementary Table 1

Structural statistics. (PDF 66 kb)

Supplementary Table 2

Detailed 2D and 3D NMR spectral information. (PDF 38 kb)

Supplementary Methods (PDF 78 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakatani, K., Hagihara, S., Goto, Y. et al. Small-molecule ligand induces nucleotide flipping in (CAG)n trinucleotide repeats. Nat Chem Biol 1, 39–43 (2005). https://doi.org/10.1038/nchembio708

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio708

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing