Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Activity-based probes that target diverse cysteine protease families

Abstract

Proteases are one of the largest and best-characterized families of enzymes in the human proteome. Unfortunately, the understanding of protease function in the context of complex proteolytic cascades remains in its infancy. One major reason for this gap in understanding is the lack of technologies that allow direct assessment of protease activity. We report here an optimized solid-phase synthesis protocol that allows rapid generation of activity-based probes (ABPs) targeting a range of cysteine protease families. These reagents selectively form covalent bonds with the active-site thiol of a cysteine protease, allowing direct biochemical profiling of protease activities in complex proteomes. We present a number of probes containing either a single amino acid or an extended peptide sequence that target caspases, legumains, gingipains and cathepsins. Biochemical studies using these reagents highlight their overall utility and provide insight into the biochemical functions of members of these protease families.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Specificity of diverse P1 amino acid AOMK probes.
Figure 2: ABPs label endogenous legumain and reveal a pH switch that governs legumain specificity.
Figure 3: AOMK-based probes selectively target caspases in crude proteomes.
Figure 4: Optimization of cathepsin B–specific AOMK probes.

Similar content being viewed by others

Accession codes

Accessions

BINDPlus

References

  1. Speers, A.E. & Cravatt, B.F. Chemical strategies for activity-based proteomics. ChemBioChem 5, 41–47 (2004).

    Article  CAS  Google Scholar 

  2. Berger, A.B., Vitorino, P.M. & Bogyo, M. Activity-based protein profiling: applications to biomarker discovery, in vivo imaging and drug discovery. Am. J. Pharmacogenomics 4, 371–381 (2004).

    Article  CAS  Google Scholar 

  3. Jeffery, D.A. & Bogyo, M. Chemical proteomics and its application to drug discovery. Curr. Opin. Biotechnol. 14, 87–95 (2003).

    Article  CAS  Google Scholar 

  4. Thornberry, N.A. et al. A combinatorial approach defines specificities of members of the caspase family and granzyme B. Functional relationships established for key mediators of apoptosis. J. Biol. Chem. 272, 17907–17911 (1997).

    Article  CAS  Google Scholar 

  5. Stennicke, H.R., Renatus, M., Meldal, M. & Salvesen, G.S. Internally quenched fluorescent peptide substrates disclose the subsite preferences of human caspases 1, 3, 6, 7 and 8. Biochem. J. 350, 563–568 (2000).

    Article  CAS  Google Scholar 

  6. Loak, K. et al. Novel cell-permeable acyloxymethylketone inhibitors of asparaginyl endopeptidase. Biol. Chem. 384, 1239–1246 (2003).

    Article  CAS  Google Scholar 

  7. Niestroj, A.J. et al. Inhibition of mammalian legumain by Michael acceptors and AzaAsn-halomethylketones. Biol. Chem. 383, 1205–1214 (2002).

    Article  CAS  Google Scholar 

  8. Asgian, J.L. et al. Aza-peptide epoxides: a new class of inhibitors selective for clan CD cysteine proteases. J. Med. Chem. 45, 4958–4960 (2002).

    Article  CAS  Google Scholar 

  9. Powers, J.C., Asgian, J.L., Ekici, O.D. & James, K.E. Irreversible inhibitors of serine, cysteine, and threonine proteases. Chem. Rev. 102, 4639–4750 (2002).

    Article  CAS  Google Scholar 

  10. Thornberry, N.A. et al. Inactivation of interleukin-1β converting enzyme by peptide (acyloxy)methyl ketones. Biochemistry 33, 3934–3940 (1994).

    Article  CAS  Google Scholar 

  11. Uhlmann, F., Wernic, D., Poupart, M.A., Koonin, E.V. & Nasmyth, K. Cleavage of cohesin by the CD clan protease separin triggers anaphase in yeast. Cell 103, 375–386 (2000).

    Article  CAS  Google Scholar 

  12. Lee, A., Huang, L. & Ellman, J.A. General solid-phase method for the preparation of mechanism-based cysteine protease inhibitors. J. Am. Chem. Soc. 121, 9907–9914 (1999).

    Article  CAS  Google Scholar 

  13. Wood, W.J., Huang, L. & Ellman, J.A. Synthesis of a diverse library of mechanism-based cysteine protease inhibitors. J. Comb. Chem. 5, 869–880 (2003).

    Article  CAS  Google Scholar 

  14. Chen, J.M., Rawlings, N.D., Stevens, R.A. & Barrett, A.J. Identification of the active site of legumain links it to caspases, clostripain and gingipains in a new clan of cysteine endopeptidases. FEBS Lett. 441, 361–365 (1998).

    Article  CAS  Google Scholar 

  15. Fox, T., Mason, P., Storer, A.C. & Mort, J.S. Modification of S1 subsite specificity in the cysteine protease cathepsin B. Protein Eng. 8, 53–57 (1995).

    Article  CAS  Google Scholar 

  16. Manoury, B. et al. An asparaginyl endopeptidase processes a microbial antigen for class II MHC presentation. Nature 396, 695–699 (1998).

    Article  CAS  Google Scholar 

  17. Chen, J.M., Fortunato, M. & Barrett, A.J. Activation of human prolegumain by cleavage at a C-terminal asparagine residue. Biochem. J. 352, 327–334 (2000).

    Article  CAS  Google Scholar 

  18. Li, D.N., Matthews, S.P., Antoniou, A.N., Mazzeo, D. & Watts, C. Multistep autoactivation of asparaginyl endopeptidase in vitro and in vivo. J. Biol. Chem. 278, 38980–38990 (2003).

    Article  CAS  Google Scholar 

  19. Halfon, S., Patel, S., Vega, F., Zurawski, S. & Zurawski, G. Autocatalytic activation of human legumain at aspartic acid residues. FEBS Lett. 438, 114–118 (1998).

    Article  CAS  Google Scholar 

  20. Boatright, K.M. & Salvesen, G.S. Mechanisms of caspase activation. Curr. Opin. Cell Biol. 15, 725–731 (2003).

    Article  CAS  Google Scholar 

  21. Li, P. et al. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91, 479–489 (1997).

    Article  CAS  Google Scholar 

  22. Meergans, T., Hildebrandt, A.K., Horak, D., Haenisch, C. & Wendel, A. The short prodomain influences caspase-3 activation in HeLa cells. Biochem. J. 349, 135–140 (2000).

    Article  CAS  Google Scholar 

  23. Denault, J.B. & Salvesen, G.S. Human caspase-7 activity and regulation by its N-terminal peptide. J. Biol. Chem. 278, 34042–34050 (2003).

    Article  CAS  Google Scholar 

  24. Turk, B., Turk, V. & Turk, D. Structural and functional aspects of papain-like cysteine proteinases and their protein inhibitors. Biol. Chem. 378, 141–150 (1997).

    CAS  PubMed  Google Scholar 

  25. Bogyo, M., Verhelst, S., Bellingard-Dubouchaud, V., Toba, S. & Greenbaum, D. Selective targeting of lysosomal cysteine proteases with radiolabeled electrophilic substrate analogs. Chem. Biol. 7, 27–38 (2000).

    Article  CAS  Google Scholar 

  26. Yamamoto, A. et al. Crystallization and preliminary X-ray study of the cathepsin B complexed with CA074, a selective inhibitor. J. Mol. Biol. 227, 942–944 (1992).

    Article  CAS  Google Scholar 

  27. Stennicke, H.R. & Salvesen, G.S. Caspases: preparation and characterization. Methods 17, 313–319 (1999).

    Article  CAS  Google Scholar 

  28. Stennicke, H.R. et al. Pro-caspase-3 is a major physiologic target of caspase-8. J. Biol. Chem. 273, 27084–27090 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank C. Watts (University of Dundee) for legumain antibodies, C. Peters and T. Reinheckel (Albert-Ludwigs-Universität Freiburg) for legumain-knockout mouse tissues, H. Chapman and J. Lee (University of California, San Francisco) for recombinant mouse legumain, V. Turk and B. Turk (J. Stefan Institute) for recombinant human cathepsin L, J. Potempa (University of Georgia) for P. gingivalis cell extracts and purified gingipains, and T. Burster (Stanford University) for cell lines. We thank A. Price and S. Snipas for technical assistance, L. Carpino (University of Massachusetts) for critical advice on the removal of the Fmoc protecting group and J. Ellman, A. Lee, L. Huang and W. Wood for helpful discussions. This work was supported by a Turman Fellowship at Stanford University (to M.B.), a National Institutes of Health National Technology Center for Networks and Pathways grant U54 RR020843 (to M.B. and G.S.S.) and a Department of Defense Breast Cancer Center of Excellence grant DAMD-17-02-0693 (to B. Sloane—M.B. subcontract). A.B. was funded by a National Human Genome Research Institute training grant 5T32 HG00044.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew Bogyo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Optimization of Fmoc deprotection during solid phase synthesis of peptide AOMK probes. (PDF 776 kb)

Supplementary Fig. 2

Labeling of protease targets using simple P1 AOMK probes in crude proteomes. (PDF 3622 kb)

Supplementary Methods (PDF 4786 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kato, D., Boatright, K., Berger, A. et al. Activity-based probes that target diverse cysteine protease families. Nat Chem Biol 1, 33–38 (2005). https://doi.org/10.1038/nchembio707

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio707

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing