Latest Research

  • Article |

    Within natural product biosynthetic pathways, nature has evolved highly selective catalysts capable of complexity generating reactions. Leveraging these tools, a suite of catalysts with complementary site- and stereoselectivity have been applied to the oxidative dearomatization of phenolic compounds, enabling one-pot transformations of phenols into various natural products.

    • Summer A. Baker Dockrey
    • , April L. Lukowski
    • , Marc R. Becker
    •  & Alison R. H. Narayan
  • Article |

    Primer exchange reaction (PER) cascades have now been used to grow nascent single-stranded DNA with user-specified sequences following prescribed reaction pathways. PER synthesis occurs in a programmable, autonomous, in situ and environmentally responsive fashion, providing a platform for engineering molecular circuits and devices with a wide range of sensing, monitoring, recording, signal processing and actuation capabilities.

    • Jocelyn Y. Kishi
    • , Thomas E. Schaus
    • , Nikhil Gopalkrishnan
    • , Feng Xuan
    •  & Peng Yin
  • Article |

    Phosphorylation of (pre)biological molecules in water has been a long-sought goal in prebiotic chemistry. Now, it has been demonstrated that diamidophosphate phosphorylates nucleosides, amino acids and glycerol/fatty acids in aqueous medium, while simultaneously leading to higher-order structures such as oligonucleotides, peptides and liposomes in the same reaction mixture.

    • Clémentine Gibard
    • , Subhendu Bhowmik
    • , Megha Karki
    • , Eun-Kyong Kim
    •  & Ramanarayanan Krishnamurthy
  • Article |

    Cyclic amines bearing α-substituents are valuable building blocks for drug discovery and natural product synthesis. Introduction of α-substituents via site-selective replacement of C–H bonds is highly attractive but typically limited to protected amine substrates. Now, an operationally simple hydride-transfer-based approach enables the introduction of α-substituents on unprotected amines.

    • Weijie Chen
    • , Longle Ma
    • , Anirudra Paul
    •  & Daniel Seidel
  • Article |

    The rate constant of DNA hybridization varies over several orders of magnitude and is affected by temperature and DNA sequence. A machine-learning algorithm that is capable of accurately predicting hybridization rate constants has now been developed. Tests with this algorithm showed that over 90% of predictions were correct to within a factor of three.

    • Jinny X. Zhang
    • , John Z. Fang
    • , Wei Duan
    • , Lucia R. Wu
    • , Angela W. Zhang
    • , Neil Dalchau
    • , Boyan Yordanov
    • , Rasmus Petersen
    • , Andrew Phillips
    •  & David Yu Zhang
  • Article |

    Electrochemical water oxidation in acidic media is a promising water-splitting technique, but typically requires noble metal catalysts. Now, two polyoxometalate salts based on earth-abundant metals have shown excellent catalytic performance for the oxygen evolution reaction. The barium salt of a cobalt- phosphotungstate polyanion outperformed the state-of-the-art IrO2 catalyst at pH's lower than 1.

    • Marta Blasco-Ahicart
    • , Joaquín Soriano-López
    • , Jorge J. Carbó
    • , Josep M. Poblet
    •  & J. R. Galan-Mascaros
  • Article |

    Colloidal particles of metal–organic frameworks (ZIF-8 and UiO-66) with different polyhedral shapes can self-assemble into well-ordered, porous three-dimensional superstructures. These superstructures function as photonic crystals, with a photonic band gap that depends on the size of the MOF particles and shifts upon the sorption of guests within their pores.

    • Civan Avci
    • , Inhar Imaz
    • , Arnau Carné-Sánchez
    • , Jose Angel Pariente
    • , Nikos Tasios
    • , Javier Pérez-Carvajal
    • , Maria Isabel Alonso
    • , Alvaro Blanco
    • , Marjolein Dijkstra
    • , Cefe López
    •  & Daniel Maspoch
  • Review |

    The emergence of synthetic fluorescent nucleobases that can be incorporated into DNA and RNA in place of their natural counterparts has enabled new tools and technologies with applications in chemistry, biology and biomedicine. This Review discusses chemical insights into canonical and non-canonical nucleobase designs, relating structure to properties.

    • Wang Xu
    • , Ke Min Chan
    •  & Eric T. Kool
  • Article |

    Oxidation chemistry is critical to introducing molecular complexity during chemical synthesis. Development of sustainable oxidation chemistry demands strategies to harness O2 as a terminal oxidant. Access to hypervalent iodine compounds — a class of broadly useful chemical oxidants — from O2 increases the scope of aerobic oxidation chemistry that can be achieved.

    • Asim Maity
    • , Sung-Min Hyun
    •  & David C. Powers
  • Article |

    The use of activating and directing groups can dramatically alter the course of a reaction. Now, it has been shown that an azo group can effectively perform as both in chiral phosphoric-acid catalysed formal nucleophilic aromatic substitution of azobenzene derivatives with indoles, affording axially chiral arylindoles with excellent enantioselectivities.

    • Liang-Wen Qi
    • , Jian-Hui Mao
    • , Jian Zhang
    •  & Bin Tan
  • Article |

    Although organocopper compounds are well known in organic chemistry, only recently has a set of catalytic reactions emerged that involves intermediates containing a copper-substituted stereogenic carbon centre. Now, a mechanistic study demonstrates that a better understanding of this distinction offers ways to address significant limitations in scope and enantioselectivity, explaining why unexpected variations in selectivity can occur.

    • Jaehee Lee
    • , Suttipol Radomkit
    • , Sebastian Torker
    • , Juan del Pozo
    •  & Amir H. Hoveyda
  • Review |

    DNA nanotechnology provides a versatile toolbox for engineering synthetic circuits in living cells. This Review discusses how nanostructures made from nucleic acids can enable biocomputation and also be readily interfaced with a variety of intracellular and in vivo components to facilitate synthetic biology applications.

    • Jiang Li
    • , Alexander A. Green
    • , Hao Yan
    •  & Chunhai Fan
  • Article |

    Steroids are arguably the most well studied and successful class of natural-product-inspired pharmaceuticals, yet step-economical and enantiospecific de novo synthesis remains challenging. Now, it is shown that the combination of metallacycle-mediated annulative cross-coupling and vinyl cyclopropane rearrangement chemistry can be used to deliver a variety of partially aromatic synthetic steroids in a concise, flexible and enantiospecific fashion.

    • Wan Shin Kim
    • , Kang Du
    • , Alan Eastman
    • , Russell P. Hughes
    •  & Glenn C. Micalizio
  • Perspective |

    Glucose-responsive insulin is a therapeutic that modulates its potency, concentration or dosing relative to a patient’s dynamic glucose concentration. This Perspective summarizes some of the recent accomplishments in this field as well as discussing new computational algorithms that may aid in the development of such therapeutics.

    • Naveed A. Bakh
    • , Abel B. Cortinas
    • , Michael A. Weiss
    • , Robert S. Langer
    • , Daniel G. Anderson
    • , Zhen Gu
    • , Sanjoy Dutta
    •  & Michael S. Strano
  • Article |

    Determining the structure­–activity relationships for complex structures can be quite challenging, but it is often the method by which many natural products are optimized for use as drugs. Now, the combination of a fluoroaryl borane catalyst, a phosphine additive and a silane reducing agent enables the late-stage selective modification of complex bioactive natural products in order to provide rapid access to a wide array of structures, and therefore functions.

    • Trandon A. Bender
    • , Philippa R. Payne
    •  & Michel R. Gagné
  • Article |

    Rationally designed arrays of hydrogen bonds between aromatic oligoamide segments have now been shown to generate abiotic helix-turn-helix and unexpected dimeric and trimeric helix bundle motifs. These structures show kinetic and thermodynamic stability, and cooperative folding in nonpolar solvents.

    • Soumen De
    • , Bo Chi
    • , Thierry Granier
    • , Ting Qi
    • , Victor Maurizot
    •  & Ivan Huc
  • Article |

    The biosynthesis of secondary metabolites such as stephacidin A and its congeners continues to intrigue both biochemists and synthetic chemists. Now, a laboratory chemical synthesis of these natural products has been achieved based on a bioinspired synthetic strategy, which may provide key insights into the possible biosynthesis of these captivating molecules.

    • Ken Mukai
    • , Danilo Pereira de Sant'Ana
    • , Yasuo Hirooka
    • , Eduardo V. Mercado-Marin
    • , David E. Stephens
    • , Kevin G. M. Kou
    • , Sven C. Richter
    • , Naomi Kelley
    •  & Richmond Sarpong
  • Article |

    Providing detailed structural descriptions of the ultrafast photochemical events that occur in light-sensitive proteins is key to their understanding. Now, excited-state structures in the reversibly switchable fluorescent protein rsEGFP2 have been solved by time-resolved crystallography using an X-ray laser. These structures enabled the design of a mutant with improved photoswitching quantum yields.

    • Nicolas Coquelle
    • , Michel Sliwa
    • , Joyce Woodhouse
    • , Giorgio Schirò
    • , Virgile Adam
    • , Andrew Aquila
    • , Thomas R. M. Barends
    • , Sébastien Boutet
    • , Martin Byrdin
    • , Sergio Carbajo
    • , Eugenio De la Mora
    • , R. Bruce Doak
    • , Mikolaj Feliks
    • , Franck Fieschi
    • , Lutz Foucar
    • , Virginia Guillon
    • , Mario Hilpert
    • , Mark S. Hunter
    • , Stefan Jakobs
    • , Jason E. Koglin
    • , Gabriela Kovacsova
    • , Thomas J. Lane
    • , Bernard Lévy
    • , Mengning Liang
    • , Karol Nass
    • , Jacqueline Ridard
    • , Joseph S. Robinson
    • , Christopher M. Roome
    • , Cyril Ruckebusch
    • , Matthew Seaberg
    • , Michel Thepaut
    • , Marco Cammarata
    • , Isabelle Demachy
    • , Martin Field
    • , Robert L. Shoeman
    • , Dominique Bourgeois
    • , Jacques-Philippe Colletier
    • , Ilme Schlichting
    •  & Martin Weik
  • Article |

    A 335 base-pair gene encoding the green fluorescent protein iLOV and an epigenetically modified variant have now been assembled by click-DNA ligation of ten functionalized oligonucleotides. The resulting fully synthetic gene contained eight triazoles at the sites of chemical ligation, yet the synthetic gene was shown to be fully biocompatible in Escherichia coli.

    • Mikiembo Kukwikila
    • , Nittaya Gale
    • , Afaf H. El-Sagheer
    • , Tom Brown
    •  & Ali Tavassoli
  • Article |

    Singlet fission — the conversion of one singlet exciton into two triplet excitons, could improve the efficiency of photovoltaic devices — but its mechanism is still to be fully understood. Now, in films of TIPS-tetracene, it has been shown that the formation of the triplet pair state, which has been proposed to mediate singlet fission, is ultrafast and vibronically coherent in this endothermic fission system.

    • Hannah L. Stern
    • , Alexandre Cheminal
    • , Shane R. Yost
    • , Katharina Broch
    • , Sam L. Bayliss
    • , Kai Chen
    • , Maxim Tabachnyk
    • , Karl Thorley
    • , Neil Greenham
    • , Justin M. Hodgkiss
    • , John Anthony
    • , Martin Head-Gordon
    • , Andrew J. Musser
    • , Akshay Rao
    •  & Richard H. Friend
  • Article |

    Two important properties in an activated chemical reaction are the barrier height and its geometrical dependence. Now, a method has been developed to directly map the angle-dependent barrier to reaction from polarized scattering data for the Cl + CHD3 reaction. The method should be applicable to many other direct reactions with a colinear barrier.

    • Huilin Pan
    • , Fengyan Wang
    • , Gábor Czakó
    •  & Kopin Liu
  • Article |

    Crystals are typically thought to be brittle and fragile materials, but needles of copper(II) acetylacetonate have now been shown to be flexible enough to be reversibly tied into a knot. Mechanistic investigations using synchrotron X-ray diffraction determined that the elastic bending occurs through rotation of the molecules within the crystal lattice.

    • Anna Worthy
    • , Arnaud Grosjean
    • , Michael C. Pfrunder
    • , Yanan Xu
    • , Cheng Yan
    • , Grant Edwards
    • , Jack K. Clegg
    •  & John C. McMurtrie
  • Article |

    Two coordination cages have been devised that undergo covalent modification during a cascade of two orthogonal Diels–Alder reactions. This results in increased lipophilicity for the second cage, enabling its phase transfer and separation from the first. The trigger, relay and inhibition features of this cascade system mimic key aspects of natural post-translational modification cascades.

    • Ben S. Pilgrim
    • , Derrick A. Roberts
    • , Thorsten G. Lohr
    • , Tanya K. Ronson
    •  & Jonathan R. Nitschke
  • Article |

    Despite advances in peptide synthesis techniques, explicit control over the quaternary structure of synthetic peptides has remained elusive. Now, the dynamic covalent chemistry of hydrazide- and aldehyde-containing peptides has now been shown to enable the formation of unique quaternary structures with topological diversity. Using this method, oligomers were assembled into complex structures showing dramatic enhancements of antimicrobial effectiveness versus Staphylococcus Aureus.

    • James F. Reuther
    • , Justine L. Dees
    • , Igor V. Kolesnichenko
    • , Erik T. Hernandez
    • , Dmitri V. Ukraintsev
    • , Rusheel Guduru
    • , Marvin Whiteley
    •  & Eric V. Anslyn
  • Article |

    The first demonstration of a protein designed entirely from first principles that binds a small-molecule cofactor in a precisely predetermined orientation has now been described. The design method utilizes a remote protein core that both anchors and predisposes a flexible binding site for the desired cofactor-binding geometry.

    • Nicholas F. Polizzi
    • , Yibing Wu
    • , Thomas Lemmin
    • , Alison M. Maxwell
    • , Shao-Qing Zhang
    • , Jeff Rawson
    • , David N. Beratan
    • , Michael J. Therien
    •  & William F. DeGrado