Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Hypersensitive dual-function luminescence switching of a silver-chalcogenolate cluster-based metal–organic framework

Abstract

Silver(i) chalcogenide/chalcogenolate clusters are promising photofunctional materials for sensing, optoelectronics and solar energy harvesting applications. However, their instability and poor room-temperature luminescent quantum yields have hampered more extensive study. Here, we graft such clusters to adaptable bridging ligands, enabling their interconnection and the formation of rigid metal–organic frameworks. By controlling the spatial separation and orientation of the clusters, they then exhibit enhanced stability (over one year) and quantum yield (12.1%). Ultrafast dual-function fluorescence switching (<1 s) is also achieved, with turn-off triggered by O2 and multicoloured turn-on by volatile organic compounds. Single-crystal X-ray diffraction of the inclusion materials, obtained by single-crystal-to-single-crystal transformation, enables precise determination of the position of the small molecules within the framework, elucidating the switching mechanism. The work enriches the cluster-based metal–organic framework portfolio, bridges the gap between silver chalcogenide/chalcogenolate clusters and metal–organic frameworks, and provides a foundation for further development of functional silver-cluster-based materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Synthesis and crystal structure of Ag12bpy and observation of its microporosity and stability by adsorption and PXRD.
Figure 2: Luminescent quenching response to O2.
Figure 3: Sites of guests in the cavity of Ag12bpy.
Figure 4: Vapochromic responses of Ag12bpy and logic gate.

Similar content being viewed by others

References

  1. Desireddy, A. et al. Ultrastable silver nanoparticles. Nature 501, 399–402 (2013).

    Article  CAS  Google Scholar 

  2. Yang, H. et al. All-thiol-stabilized Ag44 and Au12Ag32 nanoparticles with single-crystal structures. Nat. Commun. 4, 2422 (2013).

    Article  Google Scholar 

  3. Schmidbaur, H. & Schier, A. Argentophilic interactions. Angew. Chem. Int. Ed. 54, 746–784 (2015).

    Article  CAS  Google Scholar 

  4. Wang, Q.-M., Lin, Y.-M. & Liu, K.-G. Role of anions associated with the formation and properties of silver clusters. Acc. Chem. Res. 48, 1570–1579 (2015).

    Article  CAS  Google Scholar 

  5. Joshi, C. P., Bootharaju, M. S. & Bakr, O. M. Tuning properties in silver clusters. J. Phys. Chem. Lett. 6, 3023–3035 (2015).

    Article  CAS  Google Scholar 

  6. Fuhr, O., Dehnen, S. & Fenske, D. Chalcogenide clusters of copper and silver from silylated chalcogenide sources. Chem. Soc. Rev. 42, 1871–1906 (2013).

    Article  CAS  Google Scholar 

  7. Yam, V. W.-W., Au, V. K.-M. & Leung, S. Y.-L. Light-emitting self-assembled materials based on d8 and d10 transition metal complexes. Chem. Rev. 115, 7589–7728 (2015).

    Article  CAS  Google Scholar 

  8. Goswami, N. et al. Luminescent metal nanoclusters with aggregation-induced emission. J. Phys. Chem. Lett. 7, 962–975 (2016).

    Article  CAS  Google Scholar 

  9. Li, G., Lei, Z. & Wang, Q.-M. Luminescent molecular Ag−S nanocluster [Ag62S13(SBut)32](BF4)4 . J. Am. Chem. Soc. 132, 17678–17679 (2010).

    Article  CAS  Google Scholar 

  10. Chen, Y. et al. Isomerism in Au28(SR)20 nanocluster and stable structures. J. Am. Chem. Soc. 138, 1482–1485 (2016).

    Article  CAS  Google Scholar 

  11. AbdulHalim, L. G. et al. Ag29(BDT)12(TPP)4: a tetravalent nanocluster. J. Am. Chem. Soc. 137, 11970–11975 (2015).

    Article  CAS  Google Scholar 

  12. Liu, W. et al. A family of highly efficient CuI-based lighting phosphors prepared by a systematic, bottom-up synthetic approach. J. Am. Chem. Soc. 137, 9400–9408 (2015).

    Article  CAS  Google Scholar 

  13. Furukawa, H., Cordova, K. E., O'Keeffe, M. & Yaghi, O. M. The chemistry and applications of metal–organic frameworks. Science 341, 1230444 (2013).

    Article  Google Scholar 

  14. Distefano, G. et al. Highly ordered alignment of a vinyl polymer by host–guest cross-polymerization. Nat. Chem. 5, 335–341 (2013).

    Article  CAS  Google Scholar 

  15. Cui, Y., Yue, Y., Qian, G. & Chen, B. Luminescent functional metal–organic frameworks. Chem. Rev. 112, 1126–1162 (2012).

    Article  CAS  Google Scholar 

  16. Lin, R.-B. et al. A noble-metal-free porous coordination framework with exceptional sensing efficiency for oxygen. Angew. Chem. Int. Ed. 52, 13429–13433 (2013).

    Article  CAS  Google Scholar 

  17. Li, J.-R., Sculley, J. & Zhou, H.-C. Metal organic frameworks for separations. Chem. Rev. 112, 869–932 (2012).

    Article  CAS  Google Scholar 

  18. Devic, T. & Serre, C. High valence 3p and transition metal based MOFs. Chem. Soc. Rev. 43, 6097–6115 (2014).

    Article  CAS  Google Scholar 

  19. Howarth, A. J. et al. Chemical, thermal and mechanical stabilities of metal–organic frameworks. Nat. Rev. Mater. 1, 15018 (2016).

    Article  CAS  Google Scholar 

  20. Zhang, W.-X. et al. Metal cluster-based functional porous coordination polymers. Coord. Chem. Rev. 293–294, 263–278 (2015).

    Article  Google Scholar 

  21. Han, Q. et al. Polyoxometalate-based homochiral metal–organic frameworks for tandem asymmetric transformation of cyclic carbonates from olefins. Nat. Commun. 6, 10007 (2015).

    Article  Google Scholar 

  22. Perry, J. J. IV, Perman, J. A. & Zaworotko, M. J. Design and synthesis of metal–organic frameworks using metal–organic polyhedra as supermolecular building blocks. Chem. Soc. Rev. 38, 1400–1417 (2009).

    Article  CAS  Google Scholar 

  23. Slater, A. G. & Cooper, A. I. Porous materials. function-led design of new porous materials. Science 348, aaa8075 (2015).

    Article  Google Scholar 

  24. Cui, Y. et al. Metal–organic frameworks as platforms for functional materials. Acc. Chem. Res. 49, 483–493 (2016).

    Article  CAS  Google Scholar 

  25. Yaghi, O. M. et al. Reticular synthesis and the design of new materials. Nature 423, 705–714 (2003).

    Article  CAS  Google Scholar 

  26. Guillerm, V. et al. Discovery and introduction of a (3,18)-connected net as an ideal blueprint for the design of metal–organic frameworks. Nat. Chem. 6, 673–680 (2014).

    Article  CAS  Google Scholar 

  27. Schoedel, A. et al. The asc trinodal platform: two-step assembly of triangular, tetrahedral, and trigonal-prismatic molecular building blocks. Angew. Chem. Int. Ed. 52, 2902–2905 (2013).

    Article  CAS  Google Scholar 

  28. Lei, Z., Pei, X.-L., Jiang, Z.-G. & Wang, Q.-M. Cluster linker approach: preparation of a luminescent porous framework with NbO topology by linking silver ions with gold(i) clusters. Angew. Chem. Int. Ed. 53, 12771–12775 (2014).

    Article  CAS  Google Scholar 

  29. Fowler, D. A. et al. Coordination polymer chains of dimeric pyrogallol[4]arene capsules. J. Am. Chem. Soc. 133, 11069–11071 (2011).

    Article  CAS  Google Scholar 

  30. Wei, Z. et al. Rigidifying fluorescent linkers by metal–organic framework formation for fluorescence blue shift and quantum yield enhancement. J. Am. Chem. Soc. 136, 8269–8276 (2014).

    Article  CAS  Google Scholar 

  31. Gong, Q. et al. Solution processable MOF yellow phosphor with exceptionally high quantum efficiency. J. Am. Chem. Soc. 136, 16724–16727 (2014).

    Article  CAS  Google Scholar 

  32. Kreno, L. E. et al. Metal–organic framework materials as chemical sensors. Chem. Rev. 112, 1105–1125 (2012).

    Article  CAS  Google Scholar 

  33. Hu, Z., Deibert, B. J. & Li, J. Luminescent metal–organic frameworks for chemical sensing and explosive detection. Chem. Soc. Rev. 43, 5815–5840 (2014).

    Article  CAS  Google Scholar 

  34. Takashima, Y. et al. Molecular decoding using luminescence from an entangled porous framework. Nat. Commun. 2, 168 (2011).

    Article  Google Scholar 

  35. de Silva, A. P. & Uchiyama, S. Molecular logic and computing. Nat. Nanotech. 2, 399–410 (2007).

    Article  CAS  Google Scholar 

  36. Xie, Z., Ma, L., deKrafft, K. E., Jin, A. & Lin, W. Porous phosphorescent coordination polymers for oxygen sensing. J. Am. Chem. Soc. 132, 922–923 (2010).

    Article  CAS  Google Scholar 

  37. Wang, X.-D. & Wolfbeis, O. S. Optical methods for sensing and imaging oxygen: materials, spectroscopies and applications. Chem. Soc. Rev. 43, 3666–3761 (2014).

    Article  CAS  Google Scholar 

  38. Lehner, P., Staudinger, C., Borisov, S. M. & Klimant, I. Ultra-sensitive optical oxygen sensors for characterization of nearly anoxic systems. Nat. Commun. 5, 4460 (2014).

    Article  CAS  Google Scholar 

  39. Inokuma, Y., Kawano, M. & Fujita, M. Crystalline molecular flasks. Nat. Chem. 3, 349–358 (2011).

    Article  CAS  Google Scholar 

  40. Liao, P.-Q., Zhu, A.-X., Zhang, W.-X., Zhang, J.-P. & Chen, X.-M. Self-catalysed aerobic oxidization of organic linker in porous crystal for on-demand regulation of sorption behaviours. Nat. Commun. 6, 6350 (2015).

    Article  CAS  Google Scholar 

  41. Zhang, J.-P., Liao, P.-Q., Zhou, H.-L., Lin, R.-B. & Chen, X.-M. Single-crystal X-ray diffraction studies on structural transformations of porous coordination polymers. Chem. Soc. Rev. 43, 5789–5814 (2014).

    Article  CAS  Google Scholar 

  42. Ikemoto, K., Inokuma, Y., Rissanen, K. & Fujita, M. X-ray snapshot observation of palladium-mediated aromatic bromination in a porous complex. J. Am. Chem. Soc. 136, 6892–6895 (2014).

    Article  CAS  Google Scholar 

  43. Bloch, W. M. et al. Capturing snapshots of post-synthetic metallation chemistry in metal–organic frameworks. Nat. Chem. 6, 906–912 (2014).

    Article  CAS  Google Scholar 

  44. Kitaura, R. et al. Formation of a one-dimensional array of oxygen in a microporous metal–organic solid. Science 298, 2358–2361 (2002).

    Article  CAS  Google Scholar 

  45. Murray, L. J. et al. Highly-selective and reversible O2 binding in Cr3(1,3,5-benzenetricarboxylate)2 . J. Am. Chem. Soc. 132, 7856–7857 (2010).

    Article  CAS  Google Scholar 

  46. Carrington, E. J., Vitorica-Yrezabal, I. J. & Brammer, L. Crystallographic studies of gas sorption in metal–organic frameworks. Acta Crystallogr. B 70, 404–422 (2014).

    Article  CAS  Google Scholar 

  47. Reichardt, C. Solvatochromic dyes as solvent polarity indicators. Chem. Rev. 94, 2319–2358 (1994).

    Article  CAS  Google Scholar 

  48. Wang, L., Li, B., Zhang, L., Li, P. & Jiang, H. An optical anion chemosensor based on a europium complex and its molecular logic behavior. Dyes Pigments 97, 26–31 (2013).

    Article  CAS  Google Scholar 

  49. Vitórica-Yrezábal, I. J. et al. Chemical transformations of a crystalline coordination polymer: a multi-stage solid–vapour reaction manifold. Chem. Sci. 4, 696–708 (2013).

    Article  Google Scholar 

  50. Chen, P. & Meyer, T. J. Medium effects on charge transfer in metal complexes. Chem. Rev. 98, 1439–1478 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grants nos 21671175, 21371153 and 21371154), the Program for Science & Technology Innovation Talents in Universities of Henan Province (no. 164100510005) and Zhengzhou University. The authors thank Y.-Y. Zhu and D.-H. Wei for discussions on DFT calculations. The authors also thank J.-P. Zhang (Sun Yat-Sen University, Guangzhou, China) for discussions and help, and F. Pan (Central China Normal University, Wuhan, China) for his direction and help with crystallographic resolution.

Author information

Authors and Affiliations

Authors

Contributions

S.-Q.Z. conceived and designed the experiments. R.-W.H. and Y.-S.W. conducted the synthesis. R.-W.H. and X.-H.W. performed SCXRD measurements and crystal structure analyses. R.-W.H., X.-H.W., X.-Y.D., C.-X.D. and S.-Q.Z. performed physical measurements. S.-Q.Z., R.-W.H. and T.C.W.M. co-wrote the manuscript.

Corresponding author

Correspondence to Shuang-Quan Zang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 13263 kb)

Supplementary information

Supplementary Movie 1 (MP4 945 kb)

Supplementary information

Supplementary Movie 2 (MP4 440 kb)

Supplementary information

Supplementary Movie 3 (MP4 659 kb)

Supplementary information

Supplementary Movie 4 (MP4 466 kb)

Supplementary information

Crystallographic data for compound Ag12 (CIF 2082 kb)

Supplementary information

Crystallographic data for compound Ag12bpy-290K (CIF 290 kb)

Supplementary information

Crystallographic data for compound Ag12bpy-100K (CIF 253 kb)

Supplementary information

Crystallographic data for compound Ag12bpy·O2-290K (CIF 291 kb)

Supplementary information

Crystallographic data for compound Ag12bpy·O2-100K (CIF 256 kb)

Supplementary information

Crystallographic data for compound Ag12bpy·EtOH (CIF 333 kb)

Supplementary information

Crystallographic data for compound Ag12bpy·Chloroform (CIF 244 kb)

Supplementary information

Crystallographic data for compound Ag12bpy·Acetonitrile (CIF 894 kb)

Supplementary information

Crystallographic data for compound Ag12bpy·Acetone (CIF 1014 kb)

Supplementary information

Crystallographic data for compound Ag12bpy·Cyclohexane (CIF 273 kb)

Supplementary information

Crystallographic data for compound Ag12bpy·Dioxane (CIF 1180 kb)

Supplementary information

Crystallographic data for compound Ag12bpy·Benzene (CIF 942 kb)

Supplementary information

Crystallographic data for compound Ag12bpy·Toluene (CIF 1148 kb)

Supplementary information

Crystallographic data for compound Ag12bpy·Fluorobenzene (CIF 2425 kb)

Supplementary information

Crystallographic data for compound Ag12bpy·Chlorobenzene (CIF 1024 kb)

Supplementary information

Crystallographic data for compound Ag12bpy·Bromobenzene (CIF 294 kb)

Supplementary information

Crystallographic data for compound Ag12bpy·Iodobenzene (CIF 533 kb)

Supplementary information

Crystallographic data for compound Ag12bpy· o -Xylene (CIF 558 kb)

Supplementary information

Crystallographic data for compound Ag12bpy· m -Xylene (CIF 797 kb)

Supplementary information

Crystallographic data for compound Ag12bpy· p -Xylene (CIF 993 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, RW., Wei, YS., Dong, XY. et al. Hypersensitive dual-function luminescence switching of a silver-chalcogenolate cluster-based metal–organic framework. Nature Chem 9, 689–697 (2017). https://doi.org/10.1038/nchem.2718

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2718

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing