Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Rapid heteroatom transfer to arylmetals utilizing multifunctional reagent scaffolds

Abstract

Arylmetals are highly valuable carbon nucleophiles that are readily and inexpensively prepared from aryl halides or arenes and widely used on both laboratory and industrial scales to react directly with a wide range of electrophiles. Although C−C bond formation has been a staple of organic synthesis, the direct transfer of primary amino (−NH2) and hydroxyl (−OH) groups to arylmetals in a scalable and environmentally friendly fashion remains a formidable synthetic challenge because of the absence of suitable heteroatom-transfer reagents. Here, we demonstrate the use of bench-stable N−H and N−alkyl oxaziridines derived from readily available terpenoid scaffolds as efficient multifunctional reagents for the direct primary amination and hydroxylation of structurally diverse aryl- and heteroarylmetals. This practical and scalable method provides one-step synthetic access to primary anilines and phenols at low temperature and avoids the use of transition-metal catalysts, ligands and additives, nitrogen-protecting groups, excess reagents and harsh workup conditions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Current approaches to primary arylamine and phenol synthesis from arylmetals in the absence of transition-metal catalysts, impact of steric hindrance on kinetic acidity and the discovery of multifunctional oxaziridine reagents for heteroatom-transfer reactions.
Figure 2: Three-dimensional representation of competitive amination and proton-transfer transition states, and the proposed mechanism of N transfer and deuterium-trapping experiments.

Similar content being viewed by others

References

  1. Rappoport, Z. The Chemistry of Phenols (John Wiley & Sons, 2004).

    Google Scholar 

  2. Rappoport, Z. The Chemistry of Anilines, Parts 1–2 (John Wiley & Sons, 2007).

    Book  Google Scholar 

  3. Blaser, H.-U., Steiner, H. & Studer, M. Selective catalytic hydrogenation of functionalized nitroarenes: an update. ChemCatChem 1, 210–221 (2009).

    Article  CAS  Google Scholar 

  4. Klinkenberg, J. L. & Hartwig, J. F. Catalytic organometallic reactions of ammonia. Angew. Chem. Int. Ed. 50, 86–95 (2011).

    Article  CAS  Google Scholar 

  5. Qiao, J. X. & Lam, P. Y. S. in Boronic Acids 2nd edn, Vol. 1 (ed. Hall, D. G.) 315–361 (Wiley-VCH, 2011).

    Book  Google Scholar 

  6. Wolfe, J. P., Wagaw, S., Marcoux, J.-F. & Buchwald, S. L. Rational development of practical catalysts for aromatic carbon–nitrogen bond formation. Acc. Chem. Res. 31, 805–818 (1998).

    Article  CAS  Google Scholar 

  7. Vo, G. D. & Hartwig, J. F. Palladium-catalyzed coupling of ammonia with aryl chlorides, bromides, iodides, and sulfonates: a general method for the preparation of primary arylamines. J. Am. Chem. Soc. 131, 11049–11061 (2009).

    Article  CAS  Google Scholar 

  8. Barker, T. J. & Jarvo, E. R. Umpolung amination: nickel-catalyzed coupling reactions of N,N-dialkyl-N-chloroamines with diorganozinc reagents. J. Am. Chem. Soc. 131, 15598–15599 (2009).

    Article  CAS  Google Scholar 

  9. Rucker, R. P., Whittaker, A. M., Dang, H. & Lalic, G. Synthesis of hindered anilines: copper-catalyzed electrophilic amination of aryl boronic esters. Angew. Chem. Int. Ed. 51, 3953–3956 (2012).

    Article  CAS  Google Scholar 

  10. Berman, A. M. & Johnson, J. S. Copper-catalyzed electrophilic amination of diorganozinc reagents. J. Am. Chem. Soc. 126, 5680–5681 (2004).

    Article  CAS  Google Scholar 

  11. Barker, T. J. & Jarvo, E. R. Developments in transition-metal-catalyzed reactions using electrophilic nitrogen sources. Synthesis 3954–3964 (2011).

  12. Mąkosza, M. Nucleophilic substitution of hydrogen in electron-deficient arenes, a general process of great practical value. Chem. Soc. Rev. 39, 2855–2868 (2010).

    Article  Google Scholar 

  13. Makosza, M. Reactions of nucleophiles with nitroarenes: multifacial and versatile electrophiles. Chem. Eur. J. 20, 5536–5545 (2014).

    Article  CAS  Google Scholar 

  14. Terrier, F. Modern Nucleophilic Aromatic Substitution (John Wiley & Sons, 2013).

    Book  Google Scholar 

  15. Alvarez-Builla, J., Vaquero, J. J. & Barlueng, J. Modern Heterocyclic Chemistry (John Wiley & Sons, 2011).

    Book  Google Scholar 

  16. Yoo, E. J., Ma, S., Mei, T.-S., Chan, K. S. L. & Yu, J.-Q. Pd-catalyzed intermolecular C–H amination with alkylamines. J. Am. Chem. Soc. 133, 7652–7655 (2011).

    Article  CAS  Google Scholar 

  17. Romero, N. A., Margrey, K. A., Tay, N. E. & Nicewicz, D. A. Site-selective arene C–H amination via photoredox catalysis. Science 349, 1326–1330 (2015).

    Article  CAS  Google Scholar 

  18. Chinnusamy, T., Feeney, K., Watson, C. G., Leonori, D. & Aggarwal, V. K. in Comprehensive Organic Synthesis 2nd edn, Vol. 7 (eds Knockel, P. & Molander, G. A.) 692–718 (Elsevier, 2014).

    Google Scholar 

  19. Enthaler, S. & Company, A. Palladium-catalyzed hydroxylation and alkoxylation. Chem. Soc. Rev. 40, 4912–4924 (2011).

    Article  CAS  Google Scholar 

  20. Alonso, D. A., Najera, C., Pastor, I. M. & Yus, M. Transition-metal-catalyzed synthesis of hydroxylated arenes. Chem. Eur. J. 16, 5274–5284 (2010).

    Article  CAS  Google Scholar 

  21. Garrett, C. E. & Prasad, K. The art of meeting palladium specifications in active pharmaceutical ingredients produced by Pd-catalyzed reactions. Adv. Synth. Catal. 346, 889–900 (2004).

    Article  CAS  Google Scholar 

  22. Knochel, P. et al. Highly functionalized organomagnesium reagents prepared through halogen–metal exchange. Angew. Chem. Int. Ed. 42, 4302–4320 (2003).

    Article  CAS  Google Scholar 

  23. Klatt, T., Markiewicz, J. T., Sämann, C. & Knochel, P. Strategies to prepare and use functionalized organometallic reagents. J. Org. Chem. 79, 4253–4269 (2014).

    Article  CAS  Google Scholar 

  24. Rappoport, Z. & Marek, I. The Chemistry of Organomagnesium Compounds (John Wiley & Sons, 2008).

    Book  Google Scholar 

  25. Erdik, E. in The Chemistry of Hydroxylamines, Oximes and Hydroxamic Acids (ed. Patai, S.) 303–341 (Wiley, 2009).

    Google Scholar 

  26. Corpet, M. & Gosmini, C. Recent advances in electrophilic amination reactions. Synthesis 46, 2258–2271 (2014).

    Article  CAS  Google Scholar 

  27. Starkov, P., Jamison, T. F. & Marek, I. Electrophilic amination: the case of nitrenoids. Chem. Eur. J. 21, 5278–5300 (2015).

    Article  CAS  Google Scholar 

  28. Kitamura, M., Suga, T., Chiba, S. & Narasaka, K. Synthesis of primary amines by the electrophilic amination of Grignard reagents with 1,3-dioxolan-2-one O-sulfonyloxime. Org. Lett. 6, 4619–4621 (2004).

    Article  CAS  Google Scholar 

  29. Kitamura, M., Chiba, S. & Narasaka, K. Synthesis of primary amines and N-methylamines by the electrophilic amination of Grignard reagents with 2-imidazolidinone O-sulfonyloxime. Bull. Chem. Soc. Jpn 76, 1063–1070 (2003).

    Article  CAS  Google Scholar 

  30. Tsutsui, H., Ichikawa, T. & Narasaka, K. Preparation of primary amines by the alkylation of O-sulfonyloximes of benzophenone derivatives with Grignard reagents. Bull. Chem. Soc. Jpn 72, 1869–1878 (1999).

    Article  CAS  Google Scholar 

  31. Chiba, S. & Narasaka, K. in Amino Group Chemistry (ed. Ricci, A.) 1–54 (Wiley VCH, 2008).

    Google Scholar 

  32. Zhu, C., Li, G., Ess, D. H., Falck, J. R. & Kürti, L. Elusive metal-free primary amination of arylboronic acids: synthetic studies and mechanism by density functional theory. J. Am. Chem. Soc. 134, 18253–18256 (2012).

    Article  CAS  Google Scholar 

  33. Mlynarski, S. N., Karns, A. S. & Morken, J. P. Direct stereospecific amination of alkyl and aryl pinacol boronates. J. Am. Chem. Soc. 134, 16449–16451 (2012).

    Article  CAS  Google Scholar 

  34. Davis, F. A., Mancinelli, P. A., Balasubramanian, K. & Nadir, U. K. Coupling and hydroxylation of lithium and Grignard reagents by oxaziridines. J. Am. Chem. Soc. 101, 1044–1045 (1979).

    Article  CAS  Google Scholar 

  35. Davis, F. A., Wei, J., Sheppard, A. C. & Gubernick, S. The mechanism of hydroxylation of organometallic reagents by 2-sulfonyloxaziridines. Tetrahedron Lett. 28, 5115–5118 (1987).

    Article  CAS  Google Scholar 

  36. He, Z. & Jamison, T. F. Continuous-flow synthesis of functionalized phenols by aerobic oxidation of Grignard reagents. Angew. Chem. Int. Ed. 53, 3353–3357 (2014).

    Article  CAS  Google Scholar 

  37. Corey, E. J. & Gross, A. W. Methods for the synthesis of chiral hindered amines. J. Org. Chem. 50, 5391–5393 (1985).

    Article  CAS  Google Scholar 

  38. Blanc, S., Bordogna, C. A. C., Buckley, B. R., Elsegood, M. R. J. & Page, P. C. B. New stable N–H oxaziridines—synthesis and reactivity. Eur. J. Org. Chem. 2010, 882–889 (2010).

    Article  Google Scholar 

  39. Page, P. C. B., Limousin, C. & Murrell, V. L. Asymmetric electrophilic amination of various carbon nucleophiles with enantiomerically pure chiral N–H oxaziridines derived from camphor and fenchone. J. Org. Chem. 67, 7787–7796 (2002).

    Article  CAS  Google Scholar 

  40. Page, P. C. B. et al. The first stable enantiomerically pure chiral N–H oxaziridines: synthesis and reactivity. J. Org. Chem. 65, 4204–4207 (2000).

    Article  CAS  Google Scholar 

  41. Choong, I. C. & Ellman, J. A. Synthesis of alkoxylamines by alkoxide amination with 3,3′-di-tert-butyloxaziridine. J. Org. Chem. 64, 6528–6529 (1999).

    Article  CAS  Google Scholar 

  42. Williamson, K. S., Michaelis, D. J. & Yoon, T. P. Advances in the chemistry of oxaziridines. Chem. Rev. 114, 8016–8036 (2014).

    Article  CAS  Google Scholar 

  43. Davis, F. A., Chen, B.-C. & Zhou, P. in Comprehensive Heterocyclic Chemistry III. Vol. 1A (ed. Katritzky, A. R.) 559–622 (Elsevier, 2008).

    Book  Google Scholar 

  44. Mori, T. & Kato, S. Analytical RISM-MP2 free energy gradient method: application to the Schlenk equilibrium of Grignard reagent. Chem. Phys. Lett. 437, 159–163 (2007).

    Article  CAS  Google Scholar 

  45. Haines, B. E. & Wiest, O. SET-induced biaryl cross-coupling: an SRN1 reaction. J. Org. Chem. 79, 2771–2774 (2014).

    Article  CAS  Google Scholar 

  46. Otte, D. A. L. & Woerpel, K. A. Evidence that additions of Grignard reagents to aliphatic aldehydes do not involve single-electron-transfer processes. Org. Lett. 17, 3906–3909 (2015).

    Article  CAS  Google Scholar 

  47. Aminova, R. M. & Ermakova, E. Rearrangements and proton transfer in nitrones by quantum chemistry and molecular dynamics. Chem. Phys. Lett. 359, 184–190 (2002).

    Article  CAS  Google Scholar 

  48. Jiménez-Osés, G., Brockway, A. J., Shaw, J. T. & Houk, K. N. Mechanism of alkoxy groups substitution by Grignard reagents on aromatic rings and experimental verification of theoretical predictions of anomalous reactions. J. Am. Chem. Soc. 135, 6633–6642 (2013).

    Article  Google Scholar 

  49. Chai, J.-D. & Head-Gordon, M. Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys. Chem. Chem. Phys. 10, 6615–6620 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

L.K. gratefully acknowledges the generous financial support from Rice University, National Institutes of Health (R01 GM-114609-01), National Science Foundation (CAREER:SusChEM CHE-1455335), the Robert A. Welch Foundation (Grant C-1764), Amgen (2014 Young Investigators' Award) and Biotage (2015 Young Principal Investigator Award), which are greatly appreciated. D.H.E. thanks BYU and the Fulton Supercomputing Lab. We thank S. Sutton and P. Richardson at Pfizer LaJolla for the thorough DSC analysis of the oxaziridine reagents used in this manuscript—the full DSC analysis and interpretation data are included in the Supplementary Information. We also thank E. M. Carreira, A. J. Catino, E.J. Corey, F. A. Davis, A. Ganesan, M. M. Joullie, J. Lopchuk, I. Marek, A. G. Myers, K.C. Nicolaou, J. Njardarson, A. Padwa, R. Sarpong, A. Toro and E. Vedejs for helpful commentary. We dedicate this article to Professor K. C. Nicolaou on the occasion of his 70th birthday.

Author information

Authors and Affiliations

Authors

Contributions

H.G. and L.K. conceived this work; H.G., Z.Z. and L.K. designed the organic chemistry experiments; H.G., Z.Z. and N.E.B. conducted the organic chemistry experiments and analysed the data; D.-H.K., D.H.E. and L.K. designed the computational studies; D.-H. K., J.C., S.J. and D.H.E. conducted the calculations and analysed the data; D.H.E. and L.K. wrote the manuscript.

Corresponding authors

Correspondence to Daniel H. Ess or László Kürti.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 28929 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, H., Zhou, Z., Kwon, DH. et al. Rapid heteroatom transfer to arylmetals utilizing multifunctional reagent scaffolds. Nature Chem 9, 681–688 (2017). https://doi.org/10.1038/nchem.2672

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2672

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing