Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

One-thousand-fold enhancement of high field liquid nuclear magnetic resonance signals at room temperature

Abstract

Nuclear magnetic resonance (NMR) is a fundamental spectroscopic technique for the study of biological systems and materials, molecular imaging and the analysis of small molecules. It detects interactions at very low energies and is thus non-invasive and applicable to a variety of targets, including animals and humans. However, one of its most severe limitations is its low sensitivity, which stems from the small interaction energies involved. Here, we report that dynamic nuclear polarization in liquid solution and at room temperature can enhance the NMR signal of 13C nuclei by up to three orders of magnitude at magnetic fields of 3 T. The experiment can be repeated within seconds for signal averaging, without interfering with the sample magnetic homogeneity. The method is therefore compatible with the conditions required for high-resolution NMR. Enhancement of 13C signals on various organic compounds opens up new perspectives for dynamic nuclear polarization as a general tool to increase the sensitivity of liquid NMR.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: 13C DNP–NMR on 13CCl4 doped with 15N-TEMPONE at 3.4 T and room temperature (νEPR = 94 GHz, νNMR (13C) = 36 MHz).
Figure 2: Effect of temperature on 13C-DNP enhancement in 13CCl4 and scalar relaxivity.
Figure 3: 13C relaxivity of CCl4 (black triangles) and CHCl3 (blue squares) in solutions with 200 mM TEMPONE.
Figure 4: 13C DNP–NMR (3.4 T) of biologically relevant compounds.

Similar content being viewed by others

References

  1. Ardenkjaer-Larsen, J. H. et al. Facing and overcoming sensitivity challenges in biomolecular NMR spectroscopy. Angew. Chem. Int. Ed. 54, 9162–9185 (2015).

    Article  CAS  Google Scholar 

  2. Rossini, A. J. et al. Dynamic nuclear polarization surface enhanced NMR spectroscopy. Acc. Chem. Res. 46, 1942–1951 (2013).

    Article  CAS  Google Scholar 

  3. Ni, Q. Z. et al. High frequency dynamic nuclear polarization. Acc. Chem. Res. 46, 1933–1941 (2013).

    Article  CAS  Google Scholar 

  4. Green, R. A. et al. The theory and practice of hyperpolarization in magnetic resonance using parahydrogen. Prog. Nucl. Magn. Reson. Spectrosc. 67, 1–48 (2012).

    Article  CAS  Google Scholar 

  5. Navon, G. et al. Enhancement of solution NMR and MRI with laser-polarized xenon. Science 271, 1848–1851 (1996).

    Article  CAS  Google Scholar 

  6. Bowers, C. R. & Weitekamp, D. P. Transformation of symmetrization order to nuclear-spin magnetization by chemical-reaction and nuclear-magnetic-resonance. Phys. Rev. Lett. 57, 2645–2648 (1986).

    Article  CAS  Google Scholar 

  7. Ardenkjaer-Larsen, J. H. et al. Increase in signal-to-noise ratio of >10,000 times in liquid-state NMR. Proc. Natl Acad. Sci. USA 100, 10158–10163 (2003).

    Article  CAS  Google Scholar 

  8. Hall, D. A. et al. Polarization-enhanced NMR spectroscopy of biomolecules in frozen solution. Science 276, 930–932 (1997).

    Article  CAS  Google Scholar 

  9. Hausser, D. & Stehlik, D. Dynamic nuclear polarization in liquids. Adv. Magn. Reson. 3, 79–139 (1968).

    Article  CAS  Google Scholar 

  10. Höfer, P. et al. Field dependent dynamic nuclear polarization with radicals in aqueous solution. J. Am. Chem. Soc. 130, 3254–3255 (2008).

    Article  Google Scholar 

  11. Griesinger, C. et al. Dynamic nuclear polarization at high magnetic fields in liquids. Prog. Nucl. Magn. Reson. Spectrosc. 64, 4–28 (2012).

    Article  CAS  Google Scholar 

  12. Franck, J. M., Pavlova, A., Scott, J. A. & Han, S. Quantitative cw Overhauser effect dynamic nuclear polarization for the analysis of local water dynamics. Prog. Nucl. Magn. Reson. Spectrosc. 74, 33–56 (2013).

    Article  CAS  Google Scholar 

  13. Prandolini, M. J., Denysenkov, V. P., Gafurov, M., Endeward, B. & Prisner, T. F. High-field dynamic nuclear polarization in aqueous solutions. J. Am. Chem. Soc. 131, 6090–6092 (2009).

    Article  CAS  Google Scholar 

  14. van Bentum, P. J. M., van der Heijden, G. H. A., Villanueva-Garibay, J. A. & Kentgens, A. P. M. Quantitative analysis of high field liquid state dynamic nuclear polarization. Phys. Chem. Chem. Phys. 13, 17831–17840 (2011).

    Article  CAS  Google Scholar 

  15. Bennati, M., Luchinat, C., Parigi, G. & Türke, M. T. Water 1H relaxation dispersion analysis on a nitroxide radical provides information on the maximal signal enhancement in Overhauser dynamic nuclear polarization experiments. Phys. Chem. Chem. Phys. 12, 5902–5910 (2010).

    Article  CAS  Google Scholar 

  16. Müller-Warmuth, W., Vilhjalmsson, R., Gerlof, P., Smidt, J. & Trommel, J. Intermolecular interactions of benzene and carbon tetrachloride with selected free radicals in solution as studied by 13C and 1H dynamic nuclear polarization. Mol. Phys. 31, 1055–1067 (1976).

    Article  Google Scholar 

  17. Wang, X. et al. Optimization and prediction of the electron-nuclear dipolar and scalar interaction in 1H and 13C liquid state dynamic nuclear polarization. Chem. Sci. 6, 6482–6495 (2015).

    Article  CAS  Google Scholar 

  18. Lingwood, M. D. & Han, S. G. Dynamic nuclear polarization of 13C in aqueous solutions under ambient conditions. J. Magn. Reson. 201, 137–145 (2009).

    Article  CAS  Google Scholar 

  19. George, C. & Chandrakumar, N. Chemical-shift-resolved 19F NMR spectroscopy between 13.5 and 135 MHz: Overhauser-DNP-enhanced diagonal suppressed correlation spectroscopy. Angew. Chem. Int. Ed. 53, 8441–8444 (2014).

    Article  CAS  Google Scholar 

  20. Loening, N. M., Rosay, M., Weis, V. & Griffin, R. G. Solution-state dynamic nuclear polarization at high magnetic field. J. Am. Chem. Soc. 124, 8808–8809 (2002).

    Article  CAS  Google Scholar 

  21. Türke, M. T., Tkach, I., Reese, M., Hofer, P. & Bennati, M. Optimization of dynamic nuclear polarization experiments in aqueous solution at 15 MHz/9.7 GHz: a comparative study with DNP at 140 MHz/94 GHz. Phys. Chem. Chem. Phys. 12, 5893–5901 (2010).

    Article  Google Scholar 

  22. Reese, M. et al. 1H and 13C dynamic nuclear polarization in aqueous solution with a twofield (0.35 T/14 T) shuttle DNP spectrometer. J. Am. Chem. Soc. 131, 15086–15087 (2009).

    Article  CAS  Google Scholar 

  23. Türke, M. T. & Bennati, M. Comparison of Overhauser DNP at 0.34 and 3.4 T with Fremy's salt. Appl. Magn. Reson. 43, 129–138 (2012).

    Article  Google Scholar 

  24. Bucaro, J. & Litovitz, T. Molecular motions in CCl4: light scattering and infrared absorption. J. Chem. Phys. 55, 3585–3588 (1971).

    Article  CAS  Google Scholar 

  25. Küçük, S. E. & Sezer, D. Multiscale computational modeling of 13C DNP in liquids. Phys. Chem. Chem. Phys. 18, 9353–9357 (2016).

    Article  Google Scholar 

  26. Jensen, P. R. et al. Hyperpolarized [1, 3-13C2] ethyl acetoacetate is a novel diagnostic metabolic marker of liver cancer. Int. J. Cancer 136, E117–E126 (2015).

    Article  CAS  Google Scholar 

  27. Nelson, S. J. et al. Metabolic imaging of patients with prostate cancer using hyperpolarized [1-13C] pyruvate. Sci. Transl. Med. 5, 198ra108 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank R. Rizzato for discussions on the initial 13C-DNP experiments and I. Tkach for technical support with the 94 GHz EPR spectrometer. Financial support was provided by the Max Planck Society. G.L. acknowledges the Alexander von Humboldt Foundation for a fellowship. C.L. and G.P. acknowledge MIUR PRIN 2012SK7ASN, the European Commission, contracts BioMedBridges 284209 and pNMR 317127, and the EU ESFRI Instruct Core Centre CERM.

Author information

Authors and Affiliations

Authors

Contributions

M.B. and G.L. conceived and designed the research. G.L., N.K. and M.L. performed the DNP and EPR experiments. M.L. and N.K. contributed equally to this work. G.P. and C.L. performed and analysed the NMRD experiments. G.L., G.P., C.L. and M.B. wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Guoquan Liu or Marina Bennati.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 614 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, G., Levien, M., Karschin, N. et al. One-thousand-fold enhancement of high field liquid nuclear magnetic resonance signals at room temperature. Nature Chem 9, 676–680 (2017). https://doi.org/10.1038/nchem.2723

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2723

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing