Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Real-time molecular scale observation of crystal formation

Abstract

How molecules in solution form crystal nuclei, which then grow into large crystals, is a poorly understood phenomenon. The classical mechanism of homogeneous crystal nucleation proceeds via the spontaneous random aggregation of species from liquid or solution. However, a non-classical mechanism suggests the formation of an amorphous dense phase that reorders to form stable crystal nuclei. So far it has remained an experimental challenge to observe the formation of crystal nuclei from five to thirty molecules. Here, using polyoxometallates, we show that the formation of small crystal nuclei is observable by cryogenic transmission electron microscopy. We observe both classical and non-classical nucleation processes, depending on the identity of the cation present. The experiments verify theoretical studies that suggest non-classical nucleation is the lower of the two energy pathways. The arrangement in just a seven-molecule proto-crystal matches the order found by X-ray diffraction of a single bulk crystal, which demonstrates that the same structure was formed in each case.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Time series of MnPFOM aggregation with NaCl.
Figure 2: Correlation between cryo-TEM images and the crystal structure.
Figure 3: MD calculations for the system with NaCl.
Figure 4: Time series of MnPFOM aggregation with CsCl.

Similar content being viewed by others

References

  1. Gibbs, J. W. On the equilibrium of heterogeneous substances (first part). Trans. Connect. Acad. Sci. 3, 108–248 (1876).

    Google Scholar 

  2. Gibbs, J. W. On the equilibrium of heterogeneous substances (concluded). Trans. Connect. Acad. Sci. 16, 343–524 (1878).

    Google Scholar 

  3. Schüth, F., Bussian, P., Ågren, F., Schunk, S. & Lindén, M. Techniques for analyzing the early stages of crystallization reactions. Solid State Sci. 3, 801–808 (2001).

    Article  Google Scholar 

  4. Erdemir, D., Lee, A. Y. & Myerson, A. S. Nucleation of crystals from solution: classical and two-step models. Acc. Chem. Res. 42, 621–629 (2009).

    Article  CAS  Google Scholar 

  5. Chayen, N. E., Saridakis, E. & Sear, R. P. Experiment and theory for heterogeneous nucleation of protein crystals in a porous medium. Proc. Natl Acad. Sci. USA 103, 597–601 (2006).

    Article  CAS  Google Scholar 

  6. Varanasi, K. K., Hsu, M., Bhate, N., Yang, W. & Deng, T. Spatial control in the heterogeneous nucleation of water. Appl. Phys. Lett. 95, 094101 (2009).

    Article  Google Scholar 

  7. Kashchiev, D. & van Rosmalen, G. M. Review: nucleation in solutions revisited. Cryst. Res. Technol. 38, 555–574 (2003).

    Article  CAS  Google Scholar 

  8. Watson, J. N. et al. TPA−silicalite crystallization from homogeneous solution: kinetics and mechanism of nucleation and growth. J. Phys. Chem. B 101, 10094–10104 (1997).

    Article  CAS  Google Scholar 

  9. Vekilov, P. G. & Galkin, O. Are nucleation kinetics of protein crystals similar to those of liquid droplets? J. Am. Chem. Soc. 122, 156–163 (2000).

    Article  Google Scholar 

  10. Galkin, O. & Vekilov, P. G. Direct determination of the nucleation rates of protein crystals. J. Phys. Chem. B 103, 10965–10971 (1999).

    Article  CAS  Google Scholar 

  11. Banfield, J. F., Welch, S. A., Zhang, H., Ebert, T. T. & Penn, R. L. Aggregation-based crystal growth and microstructure development in natural iron oxyhydroxide biomineralization products. Science 289, 751–754 (2000).

    Article  CAS  Google Scholar 

  12. Baumgartner, J. et al. Nucleation and growth of magnetite from solution. Nat. Mater. 12, 310–314 (2013).

    Article  CAS  Google Scholar 

  13. Van Driessche, A. E. S. et al. The role and implications of bassanite as a stable precursor phase to gypsum precipitation. Science 336, 69–72 (2012).

    Article  CAS  Google Scholar 

  14. Gebauer, D., Volkel, A. & Colfen, H. Stable prenucleation calcium carbonate clusters. Science 322, 1819–1822 (2008).

    Article  CAS  Google Scholar 

  15. De Yoreo, J. J. et al. Crystallization by particle attachment in synthetic, biogenic, and geologic environments. Science 349, aaa6760 (2015).

    Article  Google Scholar 

  16. ten Wolde, P. R. & Frenkel, D. Enhancement of protein crystal nucleation by critical density fluctuations. Science 277, 1975–1978 (1997).

    Article  CAS  Google Scholar 

  17. Wolf, S. E., Leiterer, J., Kappl, M., Emmerling, F. & Tremel, W. Early homogenous amorphous precursor stages of calcium carbonate and subsequent crystal growth in levitated droplets. J. Am. Chem. Soc. 130, 12342–12347 (2008).

    Article  CAS  Google Scholar 

  18. Galkin, O., Chen, K., Nagel, R. L., Hirsch, R. E. & Vekilov, P. G. Liquid–liquid separation in solutions of normal and sickle cell hemoglobin. Proc. Natl Acad. Sci. USA 99, 8479–8483 (2002).

    Article  CAS  Google Scholar 

  19. Vekilov, P. G. Nucleation. Cryst. Growth Des. 10, 5007–5019 (2010).

    Article  CAS  Google Scholar 

  20. Yuwono, V. M., Burrows, N. D., Soltis, J. A. & Penn, R. L. Oriented aggregation: formation and transformation of mesocrystal intermediates revealed. J. Am. Chem. Soc. 132, 2163–2165 (2010).

    Article  CAS  Google Scholar 

  21. Niederberger, M. & Cölfen, H. Oriented attachment and mesocrystals: non-classical crystallization mechanisms based on nanoparticle assembly. Phys. Chem. Chem. Phys. 8, 3271–3287 (2006).

    Article  CAS  Google Scholar 

  22. Nielsen, M. H., Aloni, S. & De Yoreo, J. J. In situ TEM imaging of CaCO3 nucleation reveals coexistence of direct and indirect pathways. Science 345, 1158–1162 (2014).

    Article  CAS  Google Scholar 

  23. Li, D. et al. Direction-specific interactions control crystal growth by oriented attachment. Science 336, 1014–1018 (2012).

    Article  CAS  Google Scholar 

  24. Chen, Q. et al. Interaction potentials of anisotropic nanocrystals from the trajectory sampling of particle motion using in situ liquid phase transmission electron microscopy. ACS Cent. Sci. 1, 33–39 (2015).

    Article  CAS  Google Scholar 

  25. Lupulescu, A. I. & Rimer, J. D. In situ imaging of silicalite-1 surface growth reveals the mechanism of crystallization. Science 344, 729–732 (2014).

    Article  CAS  Google Scholar 

  26. Yau, S. T. & Vekilov, P. G. Direct observation of nucleus structure and nucleation pathways in apoferritin crystallization. J. Am. Chem. Soc. 123, 1080–1089 (2001).

    Article  CAS  Google Scholar 

  27. Pope, M. T. Heteropoly and Isopoly Oxometalates (Springer, 1983).

    Book  Google Scholar 

  28. Qiu, J. & Burns, P. C. Clusters of actinides with oxide, peroxide or hydroxide bridges. Chem. Rev. 113, 1097–1120 (2013).

    Article  CAS  Google Scholar 

  29. Liu, T., Diemann, E., Li, H., Dress, A. W. M. & Muller, A. Self-assembly in aqueous solution of wheel-shaped Mo154 oxide clusters into vesicles. Nature 426, 59–62 (2003).

    Article  CAS  Google Scholar 

  30. Chauveau, F., Doppelt, P. & Lefebvre, J. Fluorotungstates of the metatungstate family: identification and properties of one compound of the 2–18 series. Inorg. Chem. 19, 2803–2806 (1980).

    Article  CAS  Google Scholar 

  31. Sharet, S. et al. Orientations of polyoxometalate anions on gold nanoparticles. Dalton Trans. 41, 9849–9851 (2012).

    Article  CAS  Google Scholar 

  32. Soltis, J. A., Wallace, C. M., Penn, R. L. & Burns, P. C. Cation-dependent hierarchical assembly of U60 nanoclusters into macro-ion assemblies imaged via cryogenic transmission electron microscopy. J. Am. Chem. Soc. 138, 191–198 (2016).

    Article  CAS  Google Scholar 

  33. Spitsyn, V. I. & Babaev, N. B. Solubility of difficultly soluble alkali metal heteropolyacids. Russ. J. Inorg. Chem. 5, 580–585 (1960).

    CAS  Google Scholar 

  34. Cho, H. J. et al. Measurement of ice thickness on vitreous ice embedded cryo-EM grids: investigation of optimizing condition for visualizing macromolecules. J. Anal. Sci. Technol. 4, 7 (2013).

    Article  Google Scholar 

  35. Vasudeva Rao, P. R. & Kolarik, Z. A review of third phase formation in extraction of actinides by neutral organophosphorus extractants. Solvent Extr. Ion Exch. 14, 955–993 (1996).

    Article  Google Scholar 

  36. Schreiber, R. E. et al. Reactivity and O2 formation by Mn(IV)- and Mn(V)-hydroxo species stabilized within a polyfluoroxometalate framework. J. Am. Chem. Soc. 137, 8738–8748 (2015).

    Article  CAS  Google Scholar 

  37. Wallace, A. F. et al. Microscopic evidence for liquid–liquid separation in supersaturated CaCO3 solutions. Science 341, 885–889 (2012).

    Article  Google Scholar 

  38. Egerton, R. Physical Principles of Electron Microscopy: An Introduction to TEM, SEM, and AEM (Springer, 2005).

    Book  Google Scholar 

  39. Pronk, S. et al. GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics 29, 845–854 (2013).

    Article  CAS  Google Scholar 

  40. Wang, J. M., Cieplak, P. & Kollman, P. A. How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules? J. Comput. Chem. 21, 1049–1074 (2000).

    Article  CAS  Google Scholar 

  41. Chaumont, A. & Wipff, G. Ion aggregation in concentrated aqueous and methanol solutions of polyoxometallates Keggin anions: the effect of counterions investigated by molecular dynamics simulations. Phys. Chem. Chem. Phys. 10, 6940–6953 (2008).

    Article  CAS  Google Scholar 

  42. López, X., Nieto-Draghi, C., Bo, C., Bonet-Avalos, J. & Poblet, J. M. Polyoxometalates in solution: molecular dynamics simulations on the α-PW12O403− Keggin anion in aqueous media. J. Phys. Chem. A 109, 1216–1222 (2005).

    Article  Google Scholar 

  43. Hay, P. J. & Wadt, W. R. Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J. Chem. Phys. 82, 270–283 (1985).

    Article  CAS  Google Scholar 

  44. van Lenthe, E., Ehlers, A. & Baerends, E. J. Geometry optimizations in the zero order regular approximation for relativistic effects. J. Chem. Phys. 110, 8943–8953 (1999).

    Article  CAS  Google Scholar 

  45. Pye, C. C. & Ziegler, T. An implementation of the conductor-like screening model of solvation within the Amsterdam density functional package. Theor. Chem. Acc. 101, 396–408 (1999).

    Article  CAS  Google Scholar 

  46. Dang, L. X. Development of nonadditive intermolecular potentials using molecular-dynamics—solvation of Li+ and F ions in polarizable water. J. Chem. Phys. 96, 6970–6977 (1992).

    Article  CAS  Google Scholar 

  47. Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W. & Klein, M. L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79, 926 (1983).

    Article  CAS  Google Scholar 

  48. Darden, T., York, D. & Pedersen, L. Particle mesh Ewald: an Nlog(N) method for Ewald sums in large systems. J. Chem. Phys. 98, 10089–10092 (1993).

    Article  CAS  Google Scholar 

  49. Bussi, G., Donadio, D. & Parrinello, M. Canonical sampling through velocity rescaling. J. Chem. Phys. 126, 014101 (2007).

    Article  Google Scholar 

  50. Hockney, R. W., Goel, S. P. & Eastwood, J. W. Quiet high-resolution computer models of a plasma. J. Comp. Phys. 14, 148–158 (1974).

    Article  Google Scholar 

Download references

Acknowledgements

The research at the Weizmann Institute of Science was funded by the Israel Science Foundation grant no. 763/14 and electron microscopy experiments were partially funded by Irving and Cherna Moscowitz Center for Nano and Bio-Nano Imaging of the Weizmann Institute of Science. R.N. is the Rebecca and Israel Sieff Professor of Chemistry. Research at Universitat Rovira i Virgili was supported by the Spanish Ministry of Science and Innovation (grant CTQ2014-52774-P) and the Generalitat de Catalunya (2014SGR199 and XRQTC). J.M.P. thanks the ICREA (Catalan Institution for Research and Advanced Studies) Foundation for an ICREA Academia award.

Author information

Authors and Affiliations

Authors

Contributions

R.E.S. carried out the majority of the research, R.E.S., L.H. and S.G.W. carried out the electron microscopy measurements and analysed tomography data, G.L. carried out the X-ray diffraction measurements, Z.-l.L., J.J.C. and J.M.P. did the molecular dynamics calculations and R.N. supervised the research.

Corresponding author

Correspondence to Ronny Neumann.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2363 kb)

Supplementary information

Crystallographic data for compound Na2K6-MnPFOM. (CIF 735 kb)

Supplementary information

Crystallographic data for compound Cs5.5K2.5-MnPFOM. (CIF 892 kb)

Supplementary movie

Supplementary movie 1 (MP4 4781 kb)

Supplementary movie

Supplementary movie 2 (MP4 868 kb)

Supplementary movie

Supplementary movie 3 (MP4 2823 kb)

Supplementary movie

Supplementary movie 4 (MP4 4518 kb)

Supplementary movie

Supplementary movie 5 (MP4 364 kb)

Supplementary movie

Supplementary movie 6 (MP4 3651 kb)

Supplementary movie

Supplementary movie 7 (MP4 1790 kb)

Supplementary movie

Supplementary movie 8 (MP4 2773 kb)

Supplementary movie

Supplementary movie 9 (MP4 893 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schreiber, R., Houben, L., Wolf, S. et al. Real-time molecular scale observation of crystal formation. Nature Chem 9, 369–373 (2017). https://doi.org/10.1038/nchem.2675

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2675

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing