Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Remote C−H alkylation and C−C bond cleavage enabled by an in situ generated palladacycle

Abstract

The direct and selective functionalization of C−H bonds of arenes is one of the most challenging yet valuable aims in organic synthesis. Despite notable recent achievements, a pre-installed directing group proved to be essential in most of the methodologies reported so far. In this context, the use of a transient directing group that can be generated in situ has attracted attention and demonstrated the great potential of this strategy. Here we report the use of an in situ generated palladacycle to accomplish remote-selective C−H alkylation reactions of arenes. Following the C−H functionalization event, the alkylated aryl ring undergoes a formal migration to provide diversely substituted benzofuran and indole scaffolds. Computational studies revealed that a palladium(IV) intermediate is not involved in the alkylation step. The aryl migration was found to proceed through a sequential C−C bond cleavage, insertion and β-hydride-elimination process. The increasing steric bulk that builds up during the C−H functionalization step drives the unusual C−C bond cleavage in a non-strained system.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Previous strategies for C−H functionalization of arenes and the current work.
Figure 2: Computational studies to elucidate the mechanism of the reaction.
Figure 3: Mechanistic studies to support the calculations and synthetic manipulations of the benzofuran product.

Similar content being viewed by others

References

  1. Astruc, D. Modern Arene Chemistry (Wiley-VCH, 2002).

    Google Scholar 

  2. Chen, X., Engle, K. M., Wang, D.-H. & Yu, J.-Q. Palladium(II)-catalyzed C–H activation/C−C cross-coupling reactions: versatility and practicality. Angew. Chem. Int. Ed. 48, 5094–5115 (2009).

    CAS  Google Scholar 

  3. Daugulis, O., Do, H.-Q. & Shabashov, D. Palladium- and copper-catalyzed arylation of carbon–hydrogen bonds. Acc. Chem. Res. 42, 1074–1086 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Colby, D. A., Bergman, R. G. & Ellman, J. A. Rhodium-catalyzed C–C bond formation via heteroatom-directed C–H bond activation. Chem. Rev. 110, 624–655 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Engle, K. M., Mei, T.-S., Wasa, M. & Yu, J.-Q. Weak coordination as a powerful means for developing broadly useful C–H functionalization reactions. Acc. Chem. Res. 45, 788–802 (2012).

    CAS  PubMed  Google Scholar 

  6. Neufeldt, S. R. & Sanford, M. S. Controlling site selectivity in palladium-catalyzed C–H bond functionalization. Acc. Chem. Res. 45, 936–946 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Huang, Z., Lim, H. N., Mo, F., Young, M. C. & Dong, G. Transition metal-catalyzed ketone-directed or mediated C–H functionalization. Chem. Soc. Rev. 44, 7764–7786 (2015).

    CAS  PubMed  Google Scholar 

  8. Gensch, T., Hopkinson, M. N., Glorius, F. & Wencel-Delord, J. Mild metal-catalyzed C–H activation: examples and concepts. Chem. Soc. Rev. 45, 2900–2936 (2016).

    CAS  PubMed  Google Scholar 

  9. Hartwig, J. F. Evolution of C−H bond functionalization from methane to methodology. J. Am. Chem. Soc. 138, 2–24 (2016).

    CAS  PubMed  Google Scholar 

  10. Davies, H. M. L. & Morton, D. Recent advances in C−H functionalization. J. Org. Chem. 81, 343–350 (2016).

    CAS  PubMed  Google Scholar 

  11. Cho, J.-Y., Tse, M. K., Holmes, D., Maleczka, R. E. Jr & Smith, M. R. III. Remarkably selective iridium catalysts for the elaboration of aromatic C–H bonds. Science 295, 305–308 (2002).

    CAS  PubMed  Google Scholar 

  12. Hartwig, J. F. Borylation and silylation of C–H bonds: a platform for diverse C–H bond functionalizations. Acc. Chem. Res. 45, 864–873 (2012).

    CAS  PubMed  Google Scholar 

  13. Robbins, D. W. & Hartwig, J. F. Sterically controlled alkylation of arenes through iridium-catalyzed C–H borylation. Angew. Chem. Int. Ed. 52, 933–937 (2013).

    CAS  Google Scholar 

  14. Chen, C. & Hartwig, J. F. Rhodium-catalyzed intermolecular C–H silylation of arenes with high steric regiocontrol. Science 343, 853–857 (2014).

    Google Scholar 

  15. Phipps, R. J. & Gaunt, M. J. A meta-selective copper-catalyzed C–H bond arylation. Science 323, 1593–1597 (2009).

    CAS  PubMed  Google Scholar 

  16. Duong, H. A., Gilligan, R. E., Cooke, M. L., Phipps, R. J. & Gaunt, M. J. Copper(II)-catalyzed meta-selective direct arylation of α-aryl carbonyl compounds. Angew. Chem. Int. Ed. 50, 463–466 (2011).

    CAS  Google Scholar 

  17. Zhang, Y.-H., Shi, B.-F. & Yu, J.-Q. Pd(II)-catalyzed olefination of electron-deficient arenes using 2,6-dialkylpyridine ligands. J. Am. Chem. Soc. 131, 5072–5074 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Leow, D., Li, G., Mei, T.-S. & Yu, J.-Q. Activation of remote meta-C–H bonds assisted by an end-on template. Nature 486, 518–522 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Wan, L., Dastbaravardeh, N., Li, G. & Yu, J.-Q. Cross-coupling of remote meta-C–H bonds directed by a U-shaped template. J. Am. Chem. Soc. 135, 18056–18059 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Tang, R.-Y., Li, G. & Yu, J.-Q. Conformation-induced remote meta-C–H activation of amines. Nature 507, 215–220 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Yang, G.-Q. et al. Pd(II)-catalyzed meta-C–H olefination, arylation, and acetoxylation of indolines using a U-shaped template. J. Am. Chem. Soc. 136, 10807–10813 (2014).

    CAS  PubMed  Google Scholar 

  22. Bag, S. et al. Remote para-C−H functionalization of arenes by a D-shaped biphenyl template-based assembly. J. Am. Chem. Soc. 137, 11888–11891 (2015).

    CAS  PubMed  Google Scholar 

  23. Catellani, M., Frignani, F. & Rangoni, A. A complex catalytic cycle leading to a regioselective synthesis of o,o′-disubstituted vinylarenes. Angew. Chem. Int. Ed. Engl. 36, 119–122 (1997).

    CAS  Google Scholar 

  24. Della Ca’, N., Fontana, M., Motti, E. & Catellani, M. Pd/norbornene: a winning combination for selective aromatic functionalization via C−H bond activation. Acc. Chem. Res. 49, 1389–1400 (2016).

    PubMed  Google Scholar 

  25. Ye, J. & Lautens, M. Palladium-catalysed norbornene-mediated C−H functionalization of arenes. Nat. Chem. 7, 863–870 (2015).

    CAS  PubMed  Google Scholar 

  26. Wang, X.-C. et al. Ligand-enabled meta-C–H activation using a transient mediator. Nature 519, 334–338 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Shen, P.-X., Wang, X.-C., Wang, P., Zhu, R.-Y. & Yu, J.-Q. Ligand-enabled meta-C−H alkylation and arylation using a modified norbornene. J. Am. Chem. Soc. 137, 11574–11577 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Dong, Z., Wang, J. & Dong, G. Simple amine-directed meta-selective C–H arylation via Pd/norbornene catalysis. J. Am. Chem. Soc. 137, 5887–5890 (2015).

    CAS  PubMed  Google Scholar 

  29. Bedford, R. B., Coles, S. J., Hursthouse, M. B. & Limmert, M. E. The catalytic intermolecular orthoarylation of phenols. Angew. Chem. Int. Ed. 42, 112–114 (2003).

    CAS  Google Scholar 

  30. Luo, J., Preciado, S. & Larrosa, I. Overriding orthopara selectivity via a traceless directing group relay strategy: the meta-selective arylation of phenols. J. Am. Chem. Soc. 136, 4109–4112 (2014).

    CAS  PubMed  Google Scholar 

  31. Mo, F. & Dong, G. Regioselective ketone α-alkylation with simple olefins via dual activation. Science 345, 68–72 (2014).

    CAS  PubMed  Google Scholar 

  32. Xu, Y., Young, M. C., Wang, C., Magness, D. M. & Dong, G. Catalytic C(sp3)−H arylation of free primary amines with an exo directing group generated in situ. Angew. Chem. Int. Ed. 55, 9084–9087 (2016).

    CAS  Google Scholar 

  33. Zhang, F.-L., Hong, K., Li, T.-J., Park, H. & Yu, J.-Q. Functionalization of C(sp3)–H bonds using a transient directing group. Science 351, 252–256 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Saidi, O. et al. Ruthenium-catalyzed meta sulfonation of 2-phenylpyridines. J. Am. Chem. Soc. 133, 19298–19301 (2011).

    CAS  PubMed  Google Scholar 

  35. Paterson, A. J., John-Campbell, S. S., Mahon, M. F., Press, N. J. & Frost, C. G. Catalytic meta-selective C–H functionalization to construct quaternary carbon centres. Chem. Commun. 51, 12807–12810 (2015).

    CAS  Google Scholar 

  36. Hofmann, N. & Ackermann, L. meta-Selective C−H bond alkylation with secondary alkyl halides. J. Am. Chem. Soc. 135, 5877–5884 (2013).

    CAS  PubMed  Google Scholar 

  37. Li, J. et al. N-Acyl amino acid ligands for ruthenium(II)-catalyzed meta-C−H tert-alkylation with removable auxiliaries. J. Am. Chem. Soc. 137, 13894–13901 (2015).

    CAS  PubMed  Google Scholar 

  38. Satoh, T. & Miura, M. Catalytic processes involving β-carbon elimination. Top. Organomet. Chem. 14, 1–20 (2005).

    CAS  Google Scholar 

  39. Dong, G. C–C Bond Activation (Topics in Current Chemistry 346, Springer, 2014).

    Google Scholar 

  40. Dermenci, A., Coe, J. W. & Dong, G. Direct activation of relatively unstrained carbon–carbon bonds in homogeneous systems. Org. Chem. Front. 1, 567–581 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Lu, Z. et al. Water-controlled regioselectivity of Pd-catalyzed domino reaction involving a C–H activation process: rapid synthesis of diverse carbo- and heterocyclic skeletons. Org. Lett. 12, 480–483 (2010).

    CAS  PubMed  Google Scholar 

  42. Sickert, M., Weinstabl, H., Peters, B., Hou, X. & Lautens, M. Intermolecular domino reaction of two aryl iodides involving two C–H functionalizations. Angew. Chem. Int. Ed. 53, 5147–5151 (2014).

    CAS  Google Scholar 

  43. Huang, Q., Fazio, A., Dai, G., Campo, M. A. & Larock, R. C. Pd-catalyzed alkyl to aryl migration and cyclization: an efficient synthesis of fused polycycles via multiple C–H activation. J. Am. Chem. Soc. 126, 7460–7461 (2004).

    PubMed  Google Scholar 

  44. Piou, T., Bunescu, A., Wang, Q., Neuville, L. & Zhu, J. Palladium-catalyzed through-space C(sp3)–H and C(sp2)–H bond activation by 1,4-palladium migration: efficient synthesis of [3,4]-fused oxindoles. Angew. Chem. Int. Ed. 52, 12385–12389 (2013).

    CAS  Google Scholar 

  45. Bunescu, A., Piou, T., Wang, Q. & Zhu, J. Pd-catalyzed dehydrogenative aryl−aryl bond formation via double C(sp2)−H bond activation: efficient synthesis of [3,4]-fused oxindoles. Org. Lett. 17, 334–337 (2015).

    CAS  PubMed  Google Scholar 

  46. Grigg, R., Fretwell, P., Meerholtz, C. & Sridharan, V. Palladium catalysed synthesis of spiroindolines. Tetrahedron 50, 359–370 (1994).

    CAS  Google Scholar 

  47. Ruck, R. T. et al. Palladium-catalyzed tandem Heck reaction/C–H functionalization—preparation of spiro-indane-oxindoles. Angew. Chem. Int. Ed. 47, 4711–4714 (2008).

    CAS  Google Scholar 

  48. Piou, T., Neuville, L. & Zhu, J. Spirocyclization by palladium-catalyzed domino Heck–direct C–H arylation reactions: synthesis of spirodihydroquinolin-2-ones. Org. Lett. 14, 3760–3763 (2012).

    CAS  PubMed  Google Scholar 

  49. Piou, T., Neuville, L. & Zhu, J. Activation of a C(sp3)–H bond by a transient σ-alkylpalladium(II) complex: synthesis of spirooxindoles through a palladium-catalyzed domino carbopalladation/C(sp3)–C(sp3) bond-forming process. Angew. Chem. Int. Ed. 51, 11561–11565 (2012).

    CAS  Google Scholar 

  50. Hopkinson, M. N., Richter, C., Schedler, M. & Glorius, F. An overview of N-heterocyclic carbenes. Nature 510, 485–496 (2014).

    CAS  PubMed  Google Scholar 

  51. Sperger, T., Sanhueza, I. A., Kalvet, I. & Schoenebeck, F. Computational studies of synthetically relevant homogeneous organometallic catalysis involving Ni, Pd, Ir, and Rh: an overview of commonly employed DFT methods and mechanistic insights. Chem. Rev. 115, 9532–9586 (2015).

    CAS  PubMed  Google Scholar 

  52. Li, J. J. Heterocyclic Chemistry in Drug Discovery (John Wiley & Sons, 2013).

    Google Scholar 

Download references

Acknowledgements

We are grateful for financial support from the Natural Sciences and Engineering Research Council (NSERC), the University of Toronto (U of T) and Alphora Research Inc. M.L. thanks the Canada Council for the Arts for a Killam Fellowship. A. Lough (U of T) is acknowledged for X-ray analysis. Z.S. is a visiting scholar from China Pharmaceutical University and thanks the China Scholarship Council. F.S. and T.S. thank the RWTH Aachen and the Evonik Foundation (scholarship to T.S.) for funding. Y.Y. thanks the Osaka University Scholarship for Overseas Research Activities 2015. C.K. is grateful for the award of a Synthesis and Solid State Pharmaceutical Centre PhD Scholarship. D. Schmidmeier is acknowledged for the synthesis of some substrates. We also thank T. Rovis (Columbia University) for suggestions on the mechanism of the reaction and providing chemicals and equipment during the revision of this manuscript, S. S. Stahl (University of Wisconsin-Madison), M. S. Taylor (U of T), D. A. Petrone (U of T), C. C. J. Loh (Max-Planck-Institut für Molekulare Physiologie, Abteilung Chemische Biologie) and I. A. Sanhueza (RWTH Aachen) for helpful discussions. M. Sickert (University of Leipzig) is acknowledged for his initial exploration in this area. This paper is dedicated to Professor Barry M. Trost on the occasion of his 75th birthday.

Author information

Authors and Affiliations

Authors

Contributions

J.Y. and M.L. conceived the idea. J.Y. and Z.S. conducted the majority of the experimental work and analysed data. T.S. and F.S. carried out the computational studies. Y.Y. and C.K. performed some preliminary screening reactions and substrate synthesis. J.Y., M.L., T.S. and F.S. prepared the manuscript with feedback from all the authors.

Corresponding authors

Correspondence to Franziska Schoenebeck or Mark Lautens.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 11448 kb)

Supplementary information

Crystallographic data for compound 2ca (CIF 3292 kb)

Supplementary information

Crystallographic data for compound 4b (CIF 945 kb)

Supplementary information

Crystallographic data for compound 4n (CIF 1397 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, J., Shi, Z., Sperger, T. et al. Remote C−H alkylation and C−C bond cleavage enabled by an in situ generated palladacycle. Nature Chem 9, 361–368 (2017). https://doi.org/10.1038/nchem.2631

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2631

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing