Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Local epigenetic reprogramming induced by G-quadruplex ligands

Abstract

DNA and histone modifications regulate transcriptional activity and thus represent valuable targets to reprogram the activity of genes. Current epigenetic therapies target the machinery that regulates these modifications, leading to global transcriptional reprogramming with the potential for extensive undesired effects. Epigenetic information can also be modified as a consequence of disrupting processive DNA replication. Here, we demonstrate that impeding replication by small-molecule-mediated stabilization of G-quadruplex nucleic acid secondary structures triggers local epigenetic plasticity. We report the use of the BU-1 locus of chicken DT40 cells to screen for small molecules able to induce G-quadruplex-dependent transcriptional reprogramming. Further characterization of the top hit compound revealed its ability to induce a dose-dependent inactivation of BU-1 expression in two steps: the loss of H3K4me3 and then subsequent DNA cytosine methylation, changes that were heritable across cell divisions even after the compound was removed. Targeting DNA secondary structures thus represents a potentially new approach for locus-specific epigenetic reprogramming.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: DT40 BU-1 gene expression as a sensitive screen for the in vivo activity of G4 ligands.
Figure 2: In vivo screen for new G4 quadruplex ligands.
Figure 3: G4- and PDC12-dependent induction of Bu-1 loss variants.
Figure 4: PDC12 reprograms histone marks leading to reduced mRNA expression.
Figure 5: PDC12 induces irreversible loss of BU-1 expression and subsequently CpG methylation.

Similar content being viewed by others

References

  1. Feinberg, A. P., Koldobskiy, M. A. & Göndör, A. Epigenetic modulators, modifiers and mediators in cancer aetiology and progression. Nat. Rev. Genet. 17, 284–299 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kelly, T. K., De Carvalho, D. D. & Jones, P. A. Epigenetic modifications as therapeutic targets. Nat. Biotechnol. 28, 1069–1078 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sarkies, P. & Sale, J. E. Cellular epigenetic stability and cancer. Trends Genet. 28, 118–127 (2012).

    Article  CAS  PubMed  Google Scholar 

  4. Šviković, S. & Sale, J. E. The effects of replication stress on S phase histone management and epigenetic memory. J. Mol. Biol. 429, 2011–2029 (2017).

    Article  PubMed  Google Scholar 

  5. Gurard-Levin, Z. A., Quivy, J. P. & Almouzni, G. Histone chaperones: assisting histone traffic and nucleosome dynamics. Annu. Rev. Biochem. 83, 487–517 (2014).

    Article  CAS  PubMed  Google Scholar 

  6. Alabert, C. & Groth, A. Chromatin replication and epigenome maintenance. Nat. Rev. Mol. Cell Biol. 13, 153–167 (2012).

    Article  CAS  PubMed  Google Scholar 

  7. Sarkies, P., Reams, C., Simpson, L. J. & Sale, J. E. Epigenetic instability due to defective replication of structured DNA. Mol. Cell 40, 703–713 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sarkies, P. et al. FANCJ coordinates two pathways that maintain epigenetic stability at G-quadruplex DNA. Nucleic Acids Res. 40, 1485–1498 (2012).

    Article  CAS  PubMed  Google Scholar 

  9. Schiavone, D. et al. Determinants of G quadruplex-induced epigenetic instability in REV1-deficient cells. EMBO J. 33, 2507–2520 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Papadopoulou, C., Guilbaud, G., Schiavone, D. & Sale, J. E. Nucleotide pool depletion induces G-quadruplex-dependent perturbation of gene expression. Cell Rep. 13, 2491–2503 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gellert, M., Lipsett, M. N. & Davies, D. R. Helix formation by guanylic acid. Proc. Natl Acad. Sci. USA 48, 2013–2018 (1962).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rhodes, D. & Lipps, H. J. G-quadruplexes and their regulatory roles in biology. Nucleic Acids Res. 43, 8627–8637 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Murat, P. & Balasubramanian, S. Existence and consequences of G-quadruplex structures in DNA. Curr. Opin. Genet. Dev. 25, 22–29 (2014).

    Article  CAS  PubMed  Google Scholar 

  14. Maizels, N. & Gray, L. T. The G4 genome. PLoS Genet. 9, e1003468 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Schiavone, D. et al. Primpol is required for replicative tolerance of G quadruplexes in vertebrate cells. Mol. Cell 61, 161–169 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Li, Y., Geyer, C. R. & Sen, D. Recognition of anionic porphyrins by DNA aptamers. Biochemistry 35, 6911–6922 (1996).

    Article  CAS  PubMed  Google Scholar 

  17. De Cian, A., DeLemos, E., Mergny, J.-L., Teulade-Fichou, M.-P. & Monchaud, D. Highly efficient G-quadruplex recognition by bisquinolinium compounds. J. Am. Chem. Soc. 129, 1856–1857 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Rodriguez, R. et al. A novel small molecule that alters shelterin integrity and triggers a DNA-damage response at telomeres. J. Am. Chem. Soc. 130, 15758–15759 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Baba, T. W., Giroir, B. P. & Humphries, E. H. Cell lines derived from avian lymphomas exhibit two distinct phenotypes. Virology 144, 139–151 (1985).

    Article  CAS  PubMed  Google Scholar 

  20. Luria, S. E. & Delbrück, M. Mutations of bacteria from virus sensitivity to virus resistance. Genetics 28, 491–511 (1943).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Lipinski, C. A., Lombardo, F., Dominy, B. W. & Feeney, P. J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Del. Rev. 23, 3–25 (1997).

    Article  CAS  Google Scholar 

  22. Bickerton, G. R., Paolini, G. V., Besnard, J., Muresan, S. & Hopkins, A. L. Quantifying the chemical beauty of drugs. Nat. Chem. 4, 90–98 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Keserü, G. M. & Makara, G. M. The influence of lead discovery strategies on the properties of drug candidates. Nat. Rev. Drug Discov. 8, 203–212 (2009).

    Article  PubMed  Google Scholar 

  24. Hittinger, A. et al. Chemical derivatives binding very specifically with G-quadruplex DNA structures and use thereof as a specific anti-cancer agent. International patent WO 2004072027 (2004).

  25. Rodriguez, R. et al. Small-molecule-induced DNA damage identifies alternative DNA structures in human genes. Nat. Chem. Biol. 8, 301–310 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Siddiqui-Jain, A., Grand, C. L., Bearss, D. J. & Hurley, L. H. Direct evidence for a G-quadruplex in a promoter region and its targeting with a small molecule to repress c-MYC transcription. Proc. Natl Acad. Sci. USA 99, 11593–11598 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Balasubramanian, S., Hurley, L. H. & Neidle, S. Targeting G-quadruplexes in gene promoters: a novel anticancer strategy? Nat. Rev. Drug Discov. 10, 261–275 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Shanbhag, N. M., Rafalska-Metcalf, I. U., Balane-Bolivar, C., Janicki, S. M. & Greenberg, R. A. ATM-dependent chromatin changes silence transcription in cis to DNA double-strand breaks. Cell 141, 970–981 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ayrapetov, M. K., Gursoy-Yuzugullu, O., Xu, C., Xu, Y. & Price, B. D. DNA double-strand breaks promote methylation of histone H3 on lysine 9 and transient formation of repressive chromatin. Proc. Natl Acad. Sci. USA 111, 9169–9174 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Prioleau, M. N., Gendron, M. C. & Hyrien, O. Replication of the chicken β-globin locus: early-firing origins at the 5′ HS4 insulator and the ρ- and βA-globin genes show opposite epigenetic modifications. Mol. Cell. Biol. 23, 3536–3549 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ooi, S. K. T. et al. DNMT3L connects unmethylated lysine 4 of histone H3 to de novo methylation of DNA. Nature 448, 714–717 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cedar, H. & Bergman, Y. Linking DNA methylation and histone modification: patterns and paradigms. Nat. Rev. Genet. 10, 295–304 (2009).

    Article  CAS  PubMed  Google Scholar 

  33. Guo, X. et al. Structural insight into autoinhibition and histone H3-induced activation of DNMT3A. Nature 517, 640–644 (2015).

    Article  CAS  PubMed  Google Scholar 

  34. Simpson, L. J. & Sale, J. E. Rev1 is essential for DNA damage tolerance and non-templated immunoglobulin gene mutation in a vertebrate cell line. EMBO J. 22, 1654–1664 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. R Development Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2016).

  36. Eklund, A. Beeswarm: An Add-on Package for the R Statistical Environment (2016).

  37. Booth, M. J. et al. Quantitative sequencing of 5-methylcytosine and 5-hydroxymethylcytosine at single-base resolution. Science 336, 934–937 (2012).

    Article  CAS  PubMed  Google Scholar 

  38. Booth, M. J. et al. Oxidative bisulfite sequencing of 5-methylcytosine and 5-hydroxymethylcytosine. Nat. Protoc. 8, 1841–1851 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Krueger, F. & Andrews, S. R. Bismark: a flexible aligner and methylation caller for bisulfite-seq applications. Bioinformatics 27, 1571–1572 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank M. Stankovic for help with genotyping PCR across BU-1 G4 and with the ChIP experiment, M. Daly, F. Zhang and V. Romashova in the LMB flow cytometry facility for cell sorting, J. Grimmett and T. Darling in LMB scientific computing for their help in sequencing analysis and C. Lowe for proofreading the manuscript. Work in the Sale group is supported by a central grant to the LMB by the MRC (U105178808). B.R. is supported by an LMB/AstraZeneca BlueSkies postdoctoral fellowship (BSF5). S.B. is a Wellcome Trust Senior Investigator (grant no. 099232/z/12/z). The Balasubramanian group is supported by a European Research Council Advanced Grant (no. 339778) and receives core funding (C14303/A17197) and programme funding (C9681/A18618) from Cancer Research UK.

Author information

Authors and Affiliations

Authors

Contributions

G.G. and P.M. designed and performed the experiments. All authors analysed and interpreted the data. B.R. analysed the impact of PDC12 on the DNA damage response. B.C.C. and P.M. synthesized the G4 ligand library. A.M., with G.G., performed the first screen of the library. G.G., P.M. and J.E.S. wrote the manuscript with contributions from all authors. J.E.S. and S.B. supervised the project.

Corresponding authors

Correspondence to Julian E. Sale or Shankar Balasubramanian.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 4024 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guilbaud, G., Murat, P., Recolin, B. et al. Local epigenetic reprogramming induced by G-quadruplex ligands. Nature Chem 9, 1110–1117 (2017). https://doi.org/10.1038/nchem.2828

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2828

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing