Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Synthesis and stability of xenon oxides Xe2O5 and Xe3O2 under pressure

Abstract

The noble gases are the most inert group of the periodic table, but their reactivity increases with pressure. Diamond-anvil-cell experiments and ab initio modelling have been used to investigate a possible direct reaction between xenon and oxygen at high pressures. We have now synthesized two oxides below 100 GPa (Xe2O5 under oxygen-rich conditions, and Xe3O2 under oxygen-poor conditions), which shows that xenon is more reactive under pressure than predicted previously. Xe2O5 was observed using X-ray diffraction methods, its structure identified through ab initio random structure searching and confirmed using X-ray absorption and Raman spectroscopies. The experiments confirm the recent prediction of Xe3O2 as a stable xenon oxide under high pressure. Xenon atoms adopt mixed oxidation states of 0 and +4 in Xe3O2 and +4 and +6 in Xe2O5. Xe3O2 and Xe2O5 form extended networks that incorporate oxygen-sharing XeO4 squares, and Xe2O5 additionally incorporates oxygen-sharing XeO5 pyramids. Other xenon oxides (XeO2, XeO3) are expected to form at higher pressures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: X-ray diffraction patterns of xenon and O2 mixtures under pressure.
Figure 2: Xe K-edge XAS of a 36% Xe–64% O2 mixture at about 82 GPa.
Figure 3: Raman spectra of Xe2O5 and Xe3O2.
Figure 4: Structures of the stable xenon oxides at 83 GPa.
Figure 5: Convex-hull diagram for xenon oxides that shows the calculated enthalpies of formation per atom from the elements for the predicted stable phases.
Figure 6: Band structure and electronic density of states of Xe2O5 at 83 GPa.

Similar content being viewed by others

References

  1. Grochala, W. Atypical compounds of gases, which have been called ‘noble’. Chem. Soc. Rev. 36, 1632–1655 (2007).

    Article  CAS  Google Scholar 

  2. Claassen, H. H., Selig, H. & Malm, J. G. Xenon tetrafluoride. J. Am. Chem. Soc. 84, 3593 (1962).

    Article  CAS  Google Scholar 

  3. Chernick, C. L. et al. Fluorine compounds of xenon and radon. Science 138, 136–138 (1962).

    Article  CAS  Google Scholar 

  4. Smith, D. F. Xenon trioxide. J. Am. Chem. Soc. 85, 816–817 (1963).

    Article  CAS  Google Scholar 

  5. Selig, H., Claassen, H. H., Chernick, C. L., Malm, J. G. & Huston, J. L. Xenon tetroxide: preparation and some properties. Science 143, 1322–1323 (1964).

    Article  CAS  Google Scholar 

  6. Brock, D. S. & Schrobilgen, G. J. Synthesis of the missing oxide of xenon, XeO2, and its implications for Earth's missing xenon. J. Am. Chem. Soc. 133, 6265–6269 (2011).

    Article  CAS  Google Scholar 

  7. Sanloup, C., Mao, H.-K. & Hemley, R. J. High-pressure transformations in xenon hydrates. Proc. Natl Acad. Sci. USA 99, 25–28 (2002).

    Article  CAS  Google Scholar 

  8. Dewaele, A., Loubeyre, P., Dumas, P. & Mezouar, M. Oxygen impurities reduce the metallization pressure of xenon. Phys. Rev. B 86, 014103 (2012).

    Article  Google Scholar 

  9. Weck, G., Dewaele, A. & Loubeyre, P. Oxygen/noble gas binary phase diagrams at 296 K and high pressures. Phys. Rev. B 82, 014112 (2010).

    Article  Google Scholar 

  10. Jephcoat, A. et al. Pressure-induced structural phase transitions in solid xenon. Phys. Rev. Lett. 59, 2670–2673 (1987).

    Article  CAS  Google Scholar 

  11. Cynn, H. et al. Martensitic fcc-to-hcp transformation observed in xenon at high pressure. Phys. Rev. Lett. 86, 4552–4555 (2001).

    Article  CAS  Google Scholar 

  12. Caldwell, W. A. et al. Geochemistry of xenon at high pressures. Science 277, 930–933 (1997).

    Article  CAS  Google Scholar 

  13. Goettel, K. A., Eggert, J. H., Silvera, I. F. & Moss, W. C. Optical evidence for the metallization of xenon at 132(5) GPa. Phys. Rev. Lett. 62, 665–668 (1989).

    Article  CAS  Google Scholar 

  14. Zhu, L., Liu, H., Pickard, C. J., Zou, G. & Ma, Y. Reactions of xenon with iron and nickel are predicted in the Earth's inner core. Nature Chem. 6, 644–648 (2014).

    Article  CAS  Google Scholar 

  15. Sanloup, C., Schmidt, B. C., Perez, E. M. C., Gregoryanz, E. & Mezouar, M. Retention of xenon in quartz and Earth's missing xenon. Science 310, 1174–1177 (2005).

    Article  CAS  Google Scholar 

  16. Sanloup, C., Bonev, S. A., Hochlaf, M. & Maynard-Casely, H. E. Reactivity of xenon with ice at planetary conditions. Phys. Rev. Lett. 110, 265501 (2013).

    Article  Google Scholar 

  17. Glass, C. W., Oganov, A. R. & Hansen, N. USPEX—evolutionary crystal structure prediction. Comput. Phys. Comm. 175, 713–720 (2006).

    Article  CAS  Google Scholar 

  18. Jung, D. Y. Ab Initio Studies in High Pressure Geochemistry PhD thesis, ETH Zürich (2008).

  19. Zhu, Q. et al. Stability of xenon oxides at high pressures. Nature Chem. 5, 61–65 (2013).

    Article  Google Scholar 

  20. Hermann, A. & Schwerdtfeger, P. Xenon suboxides stable under pressure. J. Phys. Chem. Lett. 5, 4336–4342 (2014).

    Article  CAS  Google Scholar 

  21. Oganov, A. R. et al. Ionic high-pressure form of elemental boron. Nature 457, 863–867 (2009).

    Article  CAS  Google Scholar 

  22. Pickard, C. J. & Needs, R. J. Structure of phase III of solid hydrogen. Nature Phys. 3, 473–476 (2007).

    Article  CAS  Google Scholar 

  23. Shcheka, S. S. & Keppler, H. The origin of the terrestrial noble-gas signature. Nature 490, 531–534 (2012).

    Article  CAS  Google Scholar 

  24. Pickard, C. J. & Needs, R. J. Ab initio random structure searching. J. Phys. Condens. Matter 23, 053201 (2011).

    Article  Google Scholar 

  25. Pickard, C. J. & Needs, R. J. High pressure phases of silane. Phys. Rev. Lett. 97, 045504 (2006).

    Article  Google Scholar 

  26. Bartlett, N., Einstein, F., Stewart, D. F. & Trotter, J. Crystal structure of [XeF5]+[PtF6]. J. Chem. Soc. A 7, 1190–1193 (1967).

    Article  Google Scholar 

  27. Weck, G., Desgreniers, S., Loubeyre, P. & Mezouar, M. Single crystal structural characterization of the metallic phase of oxygen. Phys. Rev. Lett. 102, 255503 (2009).

    Article  CAS  Google Scholar 

  28. Mulliken, R. S. Electronic population analysis on LCAO–MO molecular wave functions. I. J. Chem. Phys. 23, 1833–1840 (1955).

    Article  CAS  Google Scholar 

  29. Bader, R. F. W. Atoms in Molecules—A Quantum Theory (Oxford Univ. Press, 1990).

    Google Scholar 

  30. Hirshfeld, F. L. Bonded-atom fragments for describing molecular charge densities. Theor. Chim. Acta 44, 129–138 (1977).

    Article  CAS  Google Scholar 

  31. Huston, J. L. & Claassen, H. H. Raman spectra and force constants for OsO4 and XeO4 . J. Chem. Phys. 52, 5646–5648 (1970).

    Article  CAS  Google Scholar 

  32. Claassen, H. H. & Knapp, G. Raman spectrum of xenic acid. J. Chem. Soc. 86, 2341–2342 (1964).

    Article  CAS  Google Scholar 

  33. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 477, 3865–3868 (1996).

    Article  Google Scholar 

  34. Heyd, J., Scuseria, G. E. & Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 118, 8207–8215 (2003).

    Article  CAS  Google Scholar 

  35. Stewart, R. B., Jacobsen, R. T. & Wagner, W. Thermodynamic properties of oxygen from the triple point to 300 K with pressures to 80 MPa. J. Phys. Chem. Ref. Data 20, 917–1021 (1991).

    Article  CAS  Google Scholar 

  36. Sifner, O. & Klomfar, J. Thermodynamic properties of xenon from the triple point to 800 K with pressures up to 350 MPa. J. Phys. Chem. Ref. Data 23, 63–152 (1994).

    Article  CAS  Google Scholar 

  37. Hammersley, A. FIT2D: An Introduction and Overview. Technical Report No. ESRF97HA02 (ESRF, 1997).

  38. Boultif, A. & Louër, D. Indexing of powder diffraction patterns for low-symmetry lattices by the successive dichotomy method. J. Appl. Cryst. 24, 987–993 (1991).

    Article  CAS  Google Scholar 

  39. Favre-Nicolin, V. & Cerny, R. A better FOX: using flexible modelling and maximum likelihood to improve direct-space ab initio structure determination from powder diffraction. Z. Kristallogr. 219, 847–856 (2004).

    CAS  Google Scholar 

  40. Mathon, O. et al. The time-resolved and extreme conditions XAS (TEXAS) facility at the European Synchrotron Radiation Facility: the general-purpose EXAFS bending-magnet beamline BM23. J. Synchrotron Rad. 22, 1548–1554 (2015).

    Article  CAS  Google Scholar 

  41. Ishimatsu, N. et al. Glitch-free X-ray absorption spectrum under high pressure obtained using nano-polycrystalline diamond anvils. J. Synchrotron Rad. 19, 768–772 (2012).

    Article  CAS  Google Scholar 

  42. Ravel, B. & Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Rad. 12, 537–541 (2005).

    Article  CAS  Google Scholar 

  43. Dewaele, A., Loubeyre, P. & Mezouar, M. Equations of state of six metals above 94 GPa. Phys. Rev. B 70, 094112 (2004).

    Article  Google Scholar 

  44. Anzellini, S., Dewaele, A., Occelli, F., Loubeyre, P. & Mezouar, M. Equation of state of rhenium and application for ultra high pressure calibration. J. Appl. Phys. 115, 043511 (2014).

    Article  Google Scholar 

  45. Akahama, Y. & Kawamura, H. Pressure calibration of diamond anvil Raman gauge to 410 GPa. J. Phys. Conf. Series 215, 012195 (2010).

    Article  Google Scholar 

  46. Clark, S. J. et al. First principles methods using CASTEP. Z. Kristallogr. 220, 567–570 (2005).

    CAS  Google Scholar 

  47. Vanderbilt, D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 41, 7892–7895 (1990).

    Article  CAS  Google Scholar 

  48. Pauling, L. The principles determining the structure of complex ionic crystals. J. Am. Chem. Soc. 51, 1010–1026 (1929).

    Article  CAS  Google Scholar 

  49. Momma, K. & Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272–1276 (2011).

    Article  CAS  Google Scholar 

  50. Kraus, W. & Nolze, G. POWDER CELL—a program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns. J. Appl. Cryst. 29, 301–303 (1996).

    Article  CAS  Google Scholar 

  51. Morris, A. J., Nicholls, R. J., Pickard, C. J. & Yates, J. R. OptaDOS: a tool for obtaining density of states, core-level and optical spectra from electronic structure codes. Comp. Phys. Comm. 185, 1477–1485 (2014).

    Article  CAS  Google Scholar 

  52. Vinet, P., Ferrante, J., Rose, J. & Smith, J. Compressibility of solids. J. Geophys. Res. 92, 9319–9325 (1987).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the ESRF for the provision of beamtime under proposals HS-4067 and HC-767. Financial support was provided by the Engineering and Physical Sciences Research Council of the UK (EP/J017639/1). Computational resources were provided by the High Performance Computing Service at the University of Cambridge and the Archer facility of the UK's National High-Performance Computing Service, for which access was obtained via the UK Car–Parrinello Consortium (EP/K014560/1). C.J.P. is supported by the Royal Society through a Royal Society Wolfson Research Merit Award. Nanopolycrystalline diamond anvils were prepared based on Japan Society for the Promotion of Science grants (No. 25220712 and No. 15H05829) to T.I. We thank M. Hanfland for the use of his laser heating set-up, and P. Loubeyre, S. Mazevet, C. Sanloup and J. Trail for helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

A.D. proposed the research, and A.D. and R.J.N. coordinated the research. A.D. performed the experiments at the synchrotron source with the help of O.M. and M.M. T.I. provided the nanopolycrystalline diamond anvils. A.D. and S.P. analysed experimental data. N.W. and C.J.P. performed the theoretical and computational work. R.J.N., A.D. and N.W. wrote the paper. All the authors commented on the manuscript.

Corresponding author

Correspondence to Agnès Dewaele.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1629 kb)

Supplementary information

Theoretically derived crystallographic data for the Xe2O5 structure at 83GPa. (CIF 10 kb)

Supplementary information

Theoretically derived crystallographic data for the Xe2O structure at 83GPa. (CIF 16 kb)

Supplementary information

Theoretically derived crystallographic data for the Xe3O2 structure at 83GPa. (CIF 5 kb)

Supplementary information

Theoretically derived crystallographic data for the XeO2 structure at 200GPa. (CIF 9 kb)

Supplementary information

Theoretically derived crystallographic data for the XeO3 structure at 150GPa. (CIF 9 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dewaele, A., Worth, N., Pickard, C. et al. Synthesis and stability of xenon oxides Xe2O5 and Xe3O2 under pressure. Nature Chem 8, 784–790 (2016). https://doi.org/10.1038/nchem.2528

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2528

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing