Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Charge-transfer-directed radical substitution enables para-selective C–H functionalization

Abstract

Efficient C–H functionalization requires selectivity for specific C–H bonds. Progress has been made for directed aromatic substitution reactions to achieve ortho and meta selectivity, but a general strategy for para-selective C–H functionalization has remained elusive. Herein we introduce a previously unappreciated concept that enables nearly complete para selectivity. We propose that radicals with high electron affinity elicit arene-to-radical charge transfer in the transition state of radical addition, which is the factor primarily responsible for high positional selectivity. We demonstrate with a simple theoretical tool that the selectivity is predictable and show the utility of the concept through a direct synthesis of aryl piperazines. Our results contradict the notion, widely held by organic chemists, that radical aromatic substitution reactions are inherently unselective. The concept of radical substitution directed by charge transfer could serve as the basis for the development of new, highly selective C–H functionalization reactions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Selective C–H functionalization.
Figure 2: Charge-transfer-directed aromatic substitution.
Figure 3: Selectivity for para substitution increases with increasing electron affinity of the radical.
Figure 4: Two-step, one-pot synthesis of aryl piperazines by charge-transfer-directed C–H functionalization.

Similar content being viewed by others

References

  1. Taylor, R. Electrophilic Aromatic Substitution (John Wiley & Sons, 1990).

    Google Scholar 

  2. Wencel-Delord, J. & Glorius, F. C–H bond activation enables the rapid construction and late-stage diversification of functional molecules. Nature Chem. 5, 369–375 (2013).

    Article  CAS  Google Scholar 

  3. Kuhl, N., Hopkinson, M. N., Wencel-Delord, J. & Glorius, F. Beyond directing groups: transition-metal-catalyzed C–H activation of simple arenes. Angew. Chem. Int. Ed. 51, 10236–10254 (2012).

    Article  CAS  Google Scholar 

  4. Engle, K. M., Mei, T.-S., Wasa, M. & Yu, J.-Q. Weak coordination as a powerful means for developing broadly useful C–H functionalization reactions. Acc. Chem. Res. 45, 788–802 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Lyons, T. W. & Sanford, M. S. Palladium-catalyzed ligand-directed C−H functionalization reactions. Chem. Rev. 110, 1147–1169 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Leow, D., Li, G., Mei, T.-S. & Yu, J.-Q. Activation of remote meta-C–H bonds assisted by an end-on template. Nature 486, 518–522 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cheng, C. & Hartwig, J. F. Rhodium-catalyzed intermolecular C–H silylation of arenes with high steric regiocontrol. Science 343, 853–857 (2014).

    Article  CAS  PubMed  Google Scholar 

  8. Mkhalid, I. A. I., Barnard, J. H., Marder, T. B., Murphy, J. M. & Hartwig, J. F. C−H activation for the construction of C−B bonds. Chem. Rev. 110, 890–931 (2009).

    Article  Google Scholar 

  9. Saito, Y., Segawa, Y. & Itami, K. para-C–H borylation of benzene derivatives by a bulky iridium catalyst. J. Am. Chem. Soc. 137, 5193–5198 (2015).

    Article  CAS  PubMed  Google Scholar 

  10. Romero, N. A., Margrey, K. A., Tay, N. E. & Nicewicz, D. A. Site-selective arene C–H amination via photoredox catalysis. Science 349, 1326–1330 (2015).

    Article  CAS  PubMed  Google Scholar 

  11. Sibbald, P. A., Rosewall, C. F., Swartz, R. D. & Michael, F. E. Mechanism of N-fluorobenzenesulfonimide promoted diamination and carboamination reactions: divergent reactivity of a Pd(IV) species. J. Am. Chem. Soc. 131, 15945–15951 (2009).

    Article  CAS  PubMed  Google Scholar 

  12. Wang, X., Leow, D. & Yu, J.-Q. Pd(II)-catalyzed para-selective C–H arylation of monosubstituted arenes. J. Am. Chem. Soc. 133, 13864–13867 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Carey, F. A. & Sundberg, R. J. Advanced Organic Chemistry B: Reaction and Synthesis 1052–1053 (Springer, 2007).

    Google Scholar 

  14. Boursalian, G. B., Ngai, M.-Y., Hojczyk, K. N. & Ritter, T. Pd-catalyzed aryl C–H imidation with arene as the limiting reagent. J. Am. Chem. Soc. 135, 13278–13281 (2013).

    Article  CAS  PubMed  Google Scholar 

  15. Fischer, H. & Radom, L. Factors controlling the addition of carbon-centered radicals to alkenes—an experimental and theoretical perspective. Angew. Chem. Int. Ed. 40, 1340–1371 (2001).

    Article  CAS  Google Scholar 

  16. Wong, M. W., Pross, A. & Radom, L. Comparison of the addition of CH3, CH2OH, and CH2CN radicals to substituted alkenes: a theoretical study of the reaction mechanism. J. Am. Chem. Soc. 116, 6284–6292 (1994).

    Article  CAS  Google Scholar 

  17. Wong, M. W., Pross, A. & Radom, L. Addition of tert-butyl radical to substituted alkenes: a theoretical study of the reaction mechanism. J. Am. Chem. Soc. 116, 11938–11943 (1994).

    Article  CAS  Google Scholar 

  18. Parr, R. G. & Yang, W. Density functional approach to the frontier-electron theory of chemical reactivity. J. Am. Chem. Soc. 106, 4049–4050 (1984).

    Article  CAS  Google Scholar 

  19. Lewars, E. Computational Chemistry 425–436 (Kluwer Academic, 2003).

    Google Scholar 

  20. Ayers, P. W. & Levy, M. Perspective on ‘Density functional approach to the frontier-electron theory of chemical reactivity’. Theor. Chem. Acc. 103, 353–360 (2000).

    Article  CAS  Google Scholar 

  21. Traynham, J. G. Ipso substitution in free-radical aromatic substitution reactions. Chem. Rev. 79, 323–330 (1979).

    Article  CAS  Google Scholar 

  22. Bloom, S. et al. A polycomponent metal-catalyzed aliphatic, allylic, and benzylic fluorination. Angew. Chem. Int. Ed. 51, 10580–10583 (2012).

    Article  CAS  Google Scholar 

  23. Pitts, C. R. et al. Direct, catalytic monofluorination of sp3 C–H bonds: a radical-based mechanism with ionic selectivity. J. Am. Chem. Soc. 136, 9780–9791 (2014).

    Article  CAS  PubMed  Google Scholar 

  24. Michaudel, Q., Thevenet, D. & Baran, P. S. Intermolecular Ritter-type C–H amination of unactivated sp3 carbons. J. Am. Chem. Soc. 134, 2547–2550 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cheng, Y., Gu, X. & Li, P. Visible-light photoredox in homolytic aromatic substitution: direct arylation of arenes with aryl halides. Org. Lett. 15, 2664–2667 (2013).

    Article  CAS  PubMed  Google Scholar 

  26. Allen, L. J., Cabrera, P. J., Lee, M. & Sanford, M. S. N-Acyloxyphthalimides as nitrogen radical precursors in the visible light photocatalyzed room temperature C–H amination of arenes and heteroarenes. J. Am. Chem. Soc. 136, 5607–5610 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Citterio, A. et al. Polar effects in free radical reactions. Homolytic aromatic amination by the amino radical cation, •+NH3: reactivity and selectivity. J. Org. Chem. 49, 4479–4482 (1984).

    Article  CAS  Google Scholar 

  28. Minisci, F. Novel applications of free-radical reactions in preparative organic chemistry. Synthesis 1–24 (1973).

    Article  Google Scholar 

  29. Minisci, F. Nuovi processi per introdurre l'azoto in molecole organiche con reazioni radicaliche: azidazione e amminazione. Chim. Ind. (Milano) 49, 705–719 (1967).

    CAS  Google Scholar 

  30. Taylor, R. D., MacCoss, M. & Lawson, A. D. G. Rings in drugs. J. Med. Chem. 57, 5845–5859 (2014).

    Article  CAS  PubMed  Google Scholar 

  31. Fischer, C. & Koenig, B. Palladium- and copper-mediated N-aryl bond formation reactions for the synthesis of biological active compounds. Beilstein J. Org. Chem. 7, 59–74 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank the National Institute of General Medical Sciences (GM088237), the National Institute of Biomedical Imaging and Bioengineering (EB013042), UCB Pharma and Kwanjeong Educational Foundation for funding. The authors further thank J. McClean (Harvard University) for helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

G.B.B., W.S.H. and A.R.M. designed and performed the experiments and analysed the data. G.B.B. discovered the Ar–TEDA formation reaction and conceived the mechanistic proposal and explanation for the positional selectivity. A.R.M. discovered the reduction of Ar–TEDA compounds to aryl piperazines. G.B.B. and T.R. prepared the manuscript with input from W.S.H. and A.R.M.

Corresponding author

Correspondence to Tobias Ritter.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 5443 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boursalian, G., Ham, W., Mazzotti, A. et al. Charge-transfer-directed radical substitution enables para-selective C–H functionalization. Nature Chem 8, 810–815 (2016). https://doi.org/10.1038/nchem.2529

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2529

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing