Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A supramolecular ruthenium macrocycle with high catalytic activity for water oxidation that mechanistically mimics photosystem II

Abstract

Mimicking the ingenuity of nature and exploiting the billions of years over which natural selection has developed numerous effective biochemical conversions is one of the most successful strategies in a chemist's toolbox. However, an inability to replicate the elegance and efficiency of the oxygen-evolving complex of photosystem II (OEC-PSII) in its oxidation of water into O2 is a significant bottleneck in the development of a closed-loop sustainable energy cycle. Here, we present an artificial metallosupramolecular macrocycle that gathers three Ru(bda) centres (bda = 2,2′-bipyridine-6,6′-dicarboxylic acid) that catalyses water oxidation. The macrocyclic architecture accelerates the rate of water oxidation via a water nucleophilic attack mechanism, similar to the mechanism exhibited by OEC-PSII, and reaches remarkable catalytic turnover frequencies >100 s–1. Photo-driven water oxidation yields outstanding activity, even in the nM concentration regime, with a turnover number of >1,255 and turnover frequency of >13.1 s–1.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Synthesis and characterization of macrocycle [Ru(bda)bpb]3.
Figure 2: Electrochemical and spectroelectrochemical investigation of [Ru(bda)bpb]3.
Figure 3: Catalytic performance of macrocycle [Ru(bda)bpb]3.
Figure 4: Kinetic isotope experiments for [Ru(bda)pic2] and [Ru(bda)bpb]3.
Figure 5: Potential mechanistic pathways for water oxidation catalysis and proposed hydrogen-bonding network in macrocycle [Ru(bda)bpb]3.
Figure 6: Photocatalytic water oxidation experiment using [Ru(bda)bpb]3 as catalyst.

Similar content being viewed by others

References

  1. Berardi, S. et al. Molecular artificial photosynthesis. Chem. Soc. Rev. 43, 7501–7519 (2014).

    Article  CAS  PubMed  Google Scholar 

  2. Llobet, A. A Key Topic for New Sustainable Energy Conversion Schemes (Wiley, 2014).

    Google Scholar 

  3. Duan, L., Wang, L., Li, F., Li, F. & Sun, L. Highly efficient bioinspired molecular Ru water oxidation catalysts with negatively charged backbone ligands. Acc. Chem. Res. 48, 2084–2096 (2015).

    Article  CAS  PubMed  Google Scholar 

  4. Hetterscheid, D. G. H. & Reek, J. N. H. Mononuclear water oxidation catalysts. Angew. Chem. Int. Ed. 51, 9740–9747 (2012).

    Article  CAS  Google Scholar 

  5. Blakemore, J. D., Crabtree, R. H. & Brudvig, G. W. Molecular catalysts for water oxidation. Chem. Rev. 115, 12974–13005 (2015).

    Article  CAS  PubMed  Google Scholar 

  6. Lv, H. et al. Polyoxometalate water oxidation catalysts and the production of green fuel. Chem. Soc. Rev. 41, 7572–7589 (2012).

    Article  CAS  PubMed  Google Scholar 

  7. Sartorel, A., Bonchio, M., Campagna, S. & Scandola, F. Tetrametallic molecular catalysts for photochemical water oxidation. Chem. Soc. Rev. 42, 2262–2280 (2013).

    Article  CAS  PubMed  Google Scholar 

  8. Kärkäs, M. D., Verho, O., Johnston, E. V. & Åkermark, B. Artificial photosynthesis: molecular systems for catalytic water oxidation. Chem. Rev. 114, 11863–12001 (2014).

    Article  CAS  PubMed  Google Scholar 

  9. Dismukes, G. C. et al. Development of bioinspired Mn4O4–cubane water oxidation catalysts: lessons from photosynthesis. Acc. Chem. Res. 42, 1935–1943 (2009).

    Article  CAS  PubMed  Google Scholar 

  10. Dau, H. et al. The mechanism of water oxidation: from electrolysis via homogeneous to biological catalysis. ChemCatChem 2, 724–761 (2010).

    Article  CAS  Google Scholar 

  11. Concepcion, J. J., Jurss, J. W., Templeton, J. L. & Meyer, T. J. One site is enough. Catalytic water oxidation by [Ru(tpy)(bpm)(OH2)]2+ and [Ru(tpy)(bpz)(OH2)]2+. J. Am. Chem. Soc. 130, 16462–16463 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Concepcion, J. J., Tsai, M.-K., Muckerman, J. T. & Meyer, T. J. Mechanism of water oxidation by single-site ruthenium complex catalysts. J. Am. Chem. Soc. 132, 1545–1557 (2010).

    Article  CAS  PubMed  Google Scholar 

  13. Duan, L. et al. A molecular ruthenium catalyst with water-oxidation activity comparable to that of photosystem II. Nature Chem. 4, 418–423 (2012).

    Article  CAS  Google Scholar 

  14. Sala, X. et al. Molecular water oxidation mechanisms followed by transition metals: state of the art. Acc. Chem. Res. 47, 504–516 (2014).

    Article  CAS  PubMed  Google Scholar 

  15. Corbucci, I. et al. Substantial improvement of pyridine-carbene iridium water oxidation catalysts by a simple methyl-to-octyl substitution. ACS Catal. 5, 2714–2718 (2015).

    Article  CAS  Google Scholar 

  16. Liu, F. et al. Mechanisms of water oxidation from the blue dimer to photosystem II. Inorg. Chem. 47, 1727–1752 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Romain, S., Bozoglian, F., Sala, X. & Llobet, A. Oxygen–oxygen bond formation by the Ru-Hbpp water oxidation catalyst occurs solely via an intramolecular reaction pathway. J. Am. Chem. Soc. 131, 2768–2769 (2009).

    Article  CAS  PubMed  Google Scholar 

  18. Tong, L., Duan, L., Xu, Y., Privalov, T. & Sun, L. Structural modifications of mononuclear ruthenium complexes: a combined experimental and theoretical study on the kinetics of ruthenium-catalyzed water oxidation. Angew. Chem. Int. Ed. 50, 445–449 (2011).

    Article  CAS  Google Scholar 

  19. Matheu, R. et al. Behavior of the Ru-bda water oxidation catalyst covalently anchored on glassy carbon electrodes. ACS Catal. 5, 3422–3429 (2015).

    Article  CAS  Google Scholar 

  20. Ashford, D. L., Sherman, B. D., Binstead, R. A., Templeton, J. L. & Meyer, T. J. Electro-assembly of a chromophore–catalyst bilayer for water oxidation and photocatalytic water splitting. Angew. Chem. Int. Ed. 54, 4778–4781 (2015).

    Article  CAS  Google Scholar 

  21. Li, F. et al. Immobilizing Ru(bda) catalyst on a photoanode via electrochemical polymerization for light-driven water splitting. ACS Catal. 5, 3786–3790 (2015).

    Article  CAS  Google Scholar 

  22. Vrettos, J. S., Limburg, J. & Brudvig, G. W. Mechanism of photosynthetic water oxidation: combining biophysical studies of photosystem II with inorganic model chemistry. Biochim. Biophys. Acta Bioenerg. 1503, 229–245 (2001).

    Article  CAS  Google Scholar 

  23. Matheu, R. et al. Intramolecular proton transfer boosts water oxidation catalyzed by a Ru complex. J. Am. Chem. Soc. 137, 10786–10795 (2015).

    Article  CAS  PubMed  Google Scholar 

  24. Cook, T. R. & Stang, P. J. Recent developments in the preparation and chemistry of metallacycles and metallacages via coordination. Chem. Rev. 115, 7001–7045 (2015).

    Article  CAS  PubMed  Google Scholar 

  25. Fujita, M., Tominaga, M., Hori, A. & Therrien, B. Coordination assemblies from a Pd(II)- cornered square complex. Acc. Chem. Res. 38, 369–378 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Frischmann, P. D., Mahata, K. & Würthner, F. Powering the future of molecular artificial photosynthesis with light-harvesting metallosupramolecular dye assemblies. Chem. Soc. Rev. 42, 1847–1870 (2013).

    Article  CAS  PubMed  Google Scholar 

  27. Duan, L., Fischer, A., Xu, Y. & Sun, L. Isolated seven-coordinate Ru(IV) dimer complex with [HOHOH] bridging ligand as an intermediate for catalytic water oxidation. J. Am. Chem. Soc. 131, 10397–10399 (2009).

    Article  CAS  PubMed  Google Scholar 

  28. Song, N. et al. Base-enhanced catalytic water oxidation by a carboxylate–bipyridine Ru(II) complex. Proc. Natl Acad. Sci. USA 112, 4935–4940 (2015).

    Article  CAS  PubMed  Google Scholar 

  29. Pourbaix, M. Atlas of Electrochemical Equilibria in Aqueous Solutions (National Association of Corrosion Engineers, 1974).

  30. Wang, L., Duan, L., Wang, Y., Ahlquist, M. S. G. & Sun, L. Highly efficient and robust molecular water oxidation catalysts based on ruthenium complexes. Chem. Commun. 50, 12947–12950 (2014).

    Article  CAS  Google Scholar 

  31. Sato, Y., Takizawa, S.-y. & Murata, S. Substituent effects on physical properties and catalytic activities toward water oxidation in mononuclear ruthenium complexes. Eur. J. Inorg. Chem. 2015, 5495–5502 (2015).

    Article  CAS  Google Scholar 

  32. Concepcion, J. J., Zhong, D. K., Szalda, D. J., Muckerman, J. T. & Fujita, E. Mechanism of water oxidation by [Ru(bda)(L)2]: the return of the ‘blue dimer’. Chem. Commun. 51, 4105–4108 (2015).

    Article  CAS  Google Scholar 

  33. Duan, L. et al. Insights into Ru-based molecular water oxidation catalysts: electronic and noncovalent-interaction effects on their catalytic activities. Inorg. Chem. 52, 7844–7852 (2013).

    Article  CAS  PubMed  Google Scholar 

  34. Sheridan, M. V. et al. Electron transfer mediator effects in the oxidative activation of a ruthenium dicarboxylate water oxidation catalyst. ACS Catal. 5, 4404–4409 (2015).

    Article  CAS  Google Scholar 

  35. Kunz, V., Stepanenko, V. & Würthner, F. Embedding of a ruthenium(II) water oxidation catalyst into nanofibers via self-assembly. Chem. Commun. 51, 290–293 (2015).

    Article  CAS  Google Scholar 

  36. Duan, L., Araujo, C. M., Ahlquist, M. S. G. & Sun, L. Highly efficient and robust molecular ruthenium catalysts for water oxidation. Proc. Natl Acad. Sci. USA 109, 15584–15588 (2012).

    Article  PubMed  Google Scholar 

  37. Carey, F. A. & Sundberg, R. J. Advanced Organic Chemistry. Part A: Structure and Mechanisms (Springer, 2007).

    Google Scholar 

  38. Staehle, R. et al. Water oxidation catalyzed by mononuclear ruthenium complexes with a 2,2′-bipyridine-6,6′-dicarboxylate (bda) ligand: how ligand environment influences the catalytic behavior. Inorg. Chem. 53, 1307–1319 (2014).

    Article  CAS  PubMed  Google Scholar 

  39. McEvoy, J. P. & Brudvig, G. W. Water-splitting chemistry of photosystem II. Chem. Rev. 106, 4455–4483 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Vigara, L. et al. Experimental and quantum chemical characterization of the water oxidation cycle catalysed by [RuII(damp)(bpy)(H2O)]2+. Chem. Sci. 3, 2576–2586 (2012).

    Article  CAS  Google Scholar 

  41. Lv, H. et al. An exceptionally fast homogeneous carbon-free cobalt-based water oxidation catalyst. J. Am. Chem. Soc. 136, 9268–9271 (2014).

    Article  CAS  PubMed  Google Scholar 

  42. Berardi, S. et al. Efficient light-driven water oxidation catalysis by dinuclear ruthenium complexes. ChemSusChem 8, 3688–3696 (2015).

    Article  CAS  PubMed  Google Scholar 

  43. Xue, L.-X., Meng, T.-T., Yang, W. & Wang, K.-Z. Recent advances in ruthenium complex-based light-driven water oxidation catalysts. J. Photochem. Photobiol. A 152(Pt A), 95–105 (2015).

    Article  CAS  Google Scholar 

  44. Meeuwissen, J. & Reek, J. N. H. Supramolecular catalysis beyond enzyme mimics. Nature Chem. 2, 615–621 (2010).

    Article  CAS  Google Scholar 

  45. Vriezema, D. M. et al. Self-assembled nanoreactors. Chem. Rev. 105, 1445–1490 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Raynal, M., Ballester, P., Vidal-Ferran, A. & van Leeuwen, P. W. N. M. Supramolecular catalysis. Part 2: Artificial enzyme mimics. Chem. Soc. Rev. 43, 1734–1787 (2014).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Bavarian Research Program ‘Solar Technologies Go Hybrid’. M.S. thanks the Fonds der Chemischen Industrie for a Kekulé fellowship. The authors thank M. Büchner (MS facility, Universität Würzburg) for help with the 18O labelling experiment. The authors also thank R. Mitrić and M.I.S. Röhr (Institute for Physical and Theoretical Chemistry, Universität Würzburg) for the DFT calculations.

Author information

Authors and Affiliations

Authors

Contributions

P.D.F. and F.W. conceived the concept of metallosupramolecular macrocyclic water oxidation catalysts. M.S. and V.K. established the experimental methodologies and performed the reported experiments. M.S. wrote the manuscript with support from all co-authors.

Corresponding author

Correspondence to Frank Würthner.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 3599 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schulze, M., Kunz, V., Frischmann, P. et al. A supramolecular ruthenium macrocycle with high catalytic activity for water oxidation that mechanistically mimics photosystem II. Nature Chem 8, 576–583 (2016). https://doi.org/10.1038/nchem.2503

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2503

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing