Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Charge-ordering transition in iron oxide Fe4O5 involving competing dimer and trimer formation

Abstract

Phase transitions that occur in materials, driven, for instance, by changes in temperature or pressure, can dramatically change the materials’ properties. Discovering new types of transitions and understanding their mechanisms is important not only from a fundamental perspective, but also for practical applications. Here we investigate a recently discovered Fe4O5 that adopts an orthorhombic CaFe3O5-type crystal structure that features linear chains of Fe ions. On cooling below 150 K, Fe4O5 undergoes an unusual charge-ordering transition that involves competing dimeric and trimeric ordering within the chains of Fe ions. This transition is concurrent with a significant increase in electrical resistivity. Magnetic-susceptibility measurements and neutron diffraction establish the formation of a collinear antiferromagnetic order above room temperature and a spin canting at 85 K that gives rise to spontaneous magnetization. We discuss possible mechanisms of this transition and compare it with the trimeronic charge ordering observed in magnetite below the Verwey transition temperature.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Crystal structure of Fe4O5.
Figure 2: Crystal structure parameters of Fe4O5.
Figure 3: Electronic properties of Fe4O5.
Figure 4: Magnetic properties of Fe4O5.
Figure 5: Magnetic structure of Fe4O5.

Similar content being viewed by others

References

  1. Verwey, E. J. W. Electronic conduction of magnetite (Fe3O4) and its transition point at low temperatures. Nature 144, 327–328 (1939).

    CAS  Google Scholar 

  2. Senn, M. S., Wright, J. P. & Attfield, J. P. Charge order and three-site distortions in the Verwey structure of magnetite. Nature 481, 173–176 (2012).

    CAS  Google Scholar 

  3. Peierls, R. E. Quantum Theory of Solids (Oxford Univ. Press, 1955).

    Google Scholar 

  4. Mott, N. F. Metal–insulator transition. Rev. Mod. Phys. 40, 677–683 (1968).

    CAS  Google Scholar 

  5. Mott, N. F. Metal–Insulator Transitions (Taylor and Francis Ltd, 1974).

    Google Scholar 

  6. Imada, M., Fujimori, A. & Tokura, Y. Metal insulator transitions. Rev. Mod. Phys. 70, 1039–1263 (1998).

    CAS  Google Scholar 

  7. Matsuoka, T. & Shimizu, K. Direct observation of a pressure-induced metal-to-semiconductor transition in lithium. Nature 458, 186–189 (2009).

    CAS  PubMed  Google Scholar 

  8. Ma, Y. et al. Transparent dense sodium. Nature 458, 182–185 (2009).

    CAS  PubMed  Google Scholar 

  9. Limelette, P. et al. Universality and critical behavior at the Mott transition. Science 302, 89–92 (2003).

    CAS  PubMed  Google Scholar 

  10. Qazilbash, M. M. et al. Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging. Science 318, 1750–1753 (2007).

    CAS  PubMed  Google Scholar 

  11. Nakano, M. et al. Collective bulk carrier delocalization driven by electrostatic surface charge accumulation. Nature 487, 459–462 (2009).

    Google Scholar 

  12. Driscoll, T. et al. Memory metamaterials. Science 325, 1518–1521 (2009).

    CAS  PubMed  Google Scholar 

  13. Lupi, S. et al. A microscopic view on the Mott transition in chromium-doped V2O3 . Nature Commun. 1, 105 (2010).

    CAS  Google Scholar 

  14. Budai, J. D. et al. Metallization of vanadium dioxide driven by large phonon entropy. Nature 515, 535–539 (2014).

    CAS  PubMed  Google Scholar 

  15. Morrison, V. R. et al. A photoinduced metal-like phase of monoclinic VO2 revealed by ultrafast electron diffraction. Science 346, 445–448 (2014).

    CAS  PubMed  Google Scholar 

  16. de Jong, S. et al. Speed limit of the insulator–metal transition in magnetite. Nature Mater. 12, 882–886 (2013).

    CAS  Google Scholar 

  17. Neaton, J. B. & Ashcroft, N. W. Pairing in dense lithium. Nature 400, 141–144 (1999).

    CAS  Google Scholar 

  18. Neaton, J. B. & Ashcroft, N. W. On the constitution of sodium at higher densities. Phys. Rev. Lett. 86, 2830–2833 (2001).

    CAS  PubMed  Google Scholar 

  19. Lavina, B. et al. Discovery of the recoverable high-pressure iron oxide Fe4O5 . Proc. Natl Acad. Sci. USA 108, 17281–17285 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Ovsyannikov, S. V. et al. Perovskite-like Mn2O3: a path to new manganites. Angew. Chem. Int. Ed. 52, 1494–1498 (2013).

    CAS  Google Scholar 

  21. Ovsyannikov, S. V. et al. A hard oxide semiconductor with a direct and narrow bandgap and switchable p–n electrical conduction. Adv. Mater. 26, 8185–8191 (2014).

    CAS  PubMed  Google Scholar 

  22. Gerardin, R., Millon, E., Brice, J. F., Evrard, O. & Le Caer, G. Transfert lectronique d'intervalence entre sites inequivalants: etude de CaFe3O5 par spestrometrie Müssbauer. J. Phys. Chem. Solids 46, 1163–1171 (1985).

    CAS  Google Scholar 

  23. Brese, N. E. & O'Keeffe, M. Bond-valence parameters for solids. Acta Cryst. B 47, 192–197 (1991).

    Google Scholar 

  24. Shchennikov, V. V., Ovsyannikov, S. V., Karkin, A. E., Todo, S. & Uwatoko, Y. Galvanomagnetic properties of fast neutron bombarded Fe3O4 magnetite: a case against charge ordering mechanism of the Verwey transition. Solid State Commun. 149, 759–762 (2009).

    CAS  Google Scholar 

  25. Morris, E. R. & Williams, Q. Electrical resistivity of Fe3O4 to 48 GPa compression-induced changes in electron hopping at mantle pressures. J. Geophys. Res. 102, 139–148 (1997).

    Google Scholar 

  26. Morin, F. J. Electrical properties of α-Fe2O3 . Phys. Rev. 93, 1195–1199 (1954).

    CAS  Google Scholar 

  27. Ovsyannikov, S. V., Morozova, N. V., Karkin, A. E. & Shchennikov, V. V. High-pressure cycling of hematite α-Fe2O3: nanostructuring, in situ electronic transport, and possible charge disproportionation. Phys. Rev. B 86, 205131 (2012).

    Google Scholar 

  28. Dedkov, Y. S., Rüdiger, U. & Güntherodt, G. Evidence for the half-metallic ferromagnetic state of Fe3O4 by spin-resolved photoelectron spectroscopy. Phys. Rev. B 65, 064417 (2002).

    Google Scholar 

  29. Fonin, M., Dedkov, Y. S., Pentcheva, R., Rüdiger, U. & Güntherodt, G. Magnetite: a search for the half-metallic state. J. Phys. Condens. Matter 19, 315217 (2007).

    CAS  PubMed  Google Scholar 

  30. Müller, G. M. et al. Spin polarization in half-metals probed by femtosecond spin excitation. Nature Mater. 8, 56–61 (2009).

    Google Scholar 

  31. Chainani, A., Yokoya, T., Morimoto, T., Takahashi, T. & Todo, S. High-resolution photoemission spectroscopy of the Verwey transition in Fe3O4 . Phys. Rev. B 51, 17976–17979 (1995).

    CAS  Google Scholar 

  32. Stokes, H. T., Campbell, B. J. & van Smaalen, S. Generation of (3 + d)-dimensional superspace groups for describing the symmetry of modulated crystalline structures. Acta Crystallogr. A 67, 45–55 (2011).

    CAS  PubMed  Google Scholar 

  33. Wright, J. P., Bell, A. M. T. & Attfield, J. P. Variable temperature powder neutron diffraction study of the Verwey transition in magnetite Fe3O4 . Solid State Sci. 2, 747–753 (2000).

    CAS  Google Scholar 

  34. Long, Y. W. et al. Temperature-induced A–B intersite charge transfer in an A-site-ordered LaCu3Fe4O12 perovskite. Nature 458, 60–63 (2009).

    CAS  PubMed  Google Scholar 

  35. Morin, F. J. Magnetic susceptibility of α-Fe2O3 and α-Fe2O3 with added titanium. Phys. Rev. 78, 819–820 (1950).

    CAS  Google Scholar 

  36. Chatterji, T. & Hansen, T. C. Magnetoelastic effects in Jahn–Teller distorted CrF2 and CuF2 studied by neutron powder diffraction. J. Phys. Condens. Matter 23, 276007 (2011).

    PubMed  Google Scholar 

  37. Vecchini, C. et al. Structural distortions in the spin-gap regime of the quantum antiferromagnet SrCu2(BO3)2 . J. Solid State Chem. 182, 3275–3281 (2009).

    CAS  Google Scholar 

  38. Walz, F. The Verwey transition—a topical review. J. Phys. Condens. Matter 14, R285–R340 (2002).

    CAS  Google Scholar 

  39. Angst, M. et al. Incommensurate charge order phase in Fe2OBO3 due to geometrical frustration. Phys. Rev. Lett. 99, 256402 (2007).

    CAS  PubMed  Google Scholar 

  40. Frost, D. J. et al. A new large-volume multianvil system. Phys. Earth Planet. Inter. 143–144, 507–514 (2004).

    Google Scholar 

  41. Woodland, A. B., Frost, D. J., Trots, D. M., Klimm, K. & Mezouar, M. In situ observation of the breakdown of magnetite (Fe3O4) to Fe4O5 and hematite at high pressures and temperatures. Am. Mineral. 97, 1808–1811 (2012).

    CAS  Google Scholar 

  42. Kothapalli, K. et al. Nuclear forward scattering and first-principles studies of the iron oxide phase Fe4O5 . Phys. Rev. B 90, 024430 (2014).

    Google Scholar 

  43. Woodland, A. B. et al. Fe4O5 and its solid solutions in several simple systems. Contrib. Miner. Petrol. 166, 1677–1686 (2013).

    CAS  Google Scholar 

  44. Ishii, T. et al. High-pressure phase transitions in FeCr2O4 and structure analysis of new post-spinel FeCr2O4 and Fe2Cr2O5 phases with meteoritical and petrological implications. Am. Mineral. 99, 1788–1797 (2014).

    Google Scholar 

  45. Guignard, J. & Crichton, W. A. Synthesis and recovery of bulk Fe4O5 from magnetite, Fe3O4. A member of a self-similar series of structures for the lower mantle and transition zone. Mineral. Mag. 78, 361–371 (2014).

    CAS  Google Scholar 

  46. Verbeeck, J. & Van Aert, S. Model based quantification of EELS spectra. Ultramicroscopy 101, 207–224 (2004).

    CAS  PubMed  Google Scholar 

  47. Palatinus, L. & Chapuis, G. SUPERFLIP—a computer program for the solution of crystal structures by charge flipping in arbitrary dimensions. J. Appl. Crystallogr. 40, 786–790 (2007).

    CAS  Google Scholar 

  48. Petricek, V., Dusek, M. & Palatinus, L. Crystallographic computing system JANA2006: general features. Z. Kristallogr. 229, 345–352 (2014).

    CAS  Google Scholar 

  49. Aksenov, V. L. et al. DN-12 time of flight high pressure neutron spectrometer for investigation of microsamples. Physica B 265, 258–262 (1999).

    CAS  Google Scholar 

  50. Rodriguez-Carvajal, J. Recent advances in magnetic structure determination by neutron powder diffraction. Physica B 192, 55–69 (1993).

    CAS  Google Scholar 

Download references

Acknowledgements

S.V.O. acknowledges the financial support of the Deutsche Forschungsgemeinschaft (DFG) under project OV-110/1-3. A.E.K. and V.V.S. acknowledge the support of the Russian Foundation for Basic Research (Project 14–02–00622a). H.G. acknowledges the support from the Alexander von Humboldt (AvH) Foundation and the National Natural Science Foundation of China (No. 51201148). A.M.A., R.E. and J.V. acknowledge financial support from the European Commission (EC) under the Seventh Framework Programme (FP7) under a contract for an Integrated Infrastructure Initiative, Reference No. 312483-ESTEEM2. R.E. acknowledges support from the EC under FP7 Grant No. 246102 IFOX. A.M.A. acknowledges funding from the Russian Science Foundation (Grant No. 14-13-00680). A.A.T. acknowledges funding and from the Federal Ministry for Education and Research through the Sofja Kovalevkaya Award of the AvH Foundation. Funding from the Fund for Scientific Research Flanders under FWO Project G.0044.13N is acknowledged. M.B. and S.v.S. acknowledge support from the DFG under Project Sm55/15-2. We acknowledge the European Synchrotron Radiation Facility for the provision of synchrotron radiation facilities.

Author information

Authors and Affiliations

Authors

Contributions

S.V.O. synthesized and characterized the Fe4O5 samples. M.B., E.B., S.v.S., V.D. and D.C. performed the single-crystal X-ray diffraction study at low temperatures. M.B. and S.v.S. resolved the structure of the new low-temperature phase. S.E.K. performed the neutron-diffraction measurements. D.P.K. analysed the neutron-diffraction data and derived magnetic-structure models. A.A.T. measured the magnetic properties. A.E.K. and V.V.S. measured the electronic-transport properties. H.G. synthesized the samples and discussed the results. A.M.A., R.E. and J.V. collected and analysed the EELS spectra. D.P.K., A.M.A., A.A.T and C.M. discussed the magnetic properties and contributed to writing the manuscript. S.V.O. wrote a first draft of the manuscript, and all the co-authors read, revised and commented on it. S.V.O. and L.S.D. initiated and designed the research.

Corresponding author

Correspondence to Sergey V. Ovsyannikov.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 3052 kb)

Supplementary information

Crystallographic data for the incommensurate structure (CIF 172 kb)

Supplementary information

Crystallographic data for the commensurate approximation (CIF 39 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ovsyannikov, S., Bykov, M., Bykova, E. et al. Charge-ordering transition in iron oxide Fe4O5 involving competing dimer and trimer formation. Nature Chem 8, 501–508 (2016). https://doi.org/10.1038/nchem.2478

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2478

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing