Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Reprogramming the assembly of unmodified DNA with a small molecule

Abstract

The ability of DNA to store and encode information arises from base pairing of the four-letter nucleobase code to form a double helix. Expanding this DNA ‘alphabet’ by synthetic incorporation of new bases can introduce new functionalities and enable the formation of novel nucleic acid structures. However, reprogramming the self-assembly of existing nucleobases presents an alternative route to expand the structural space and functionality of nucleic acids. Here we report the discovery that a small molecule, cyanuric acid, with three thymine-like faces, reprogrammes the assembly of unmodified poly(adenine) (poly(A)) into stable, long and abundant fibres with a unique internal structure. Poly(A) DNA, RNA and peptide nucleic acid (PNA) all form these assemblies. Our studies are consistent with the association of adenine and cyanuric acid units into a hexameric rosette, which brings together poly(A) triplexes with a subsequent cooperative polymerization. Fundamentally, this study shows that small hydrogen-bonding molecules can be used to induce the assembly of nucleic acids in water, which leads to new structures from inexpensive and readily available materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: CA-mediated assembly of d(An).
Figure 2: Proposed hexameric rosette structure.
Figure 3: Fibre elongation mode.
Figure 4: Mechanism of supramolecular polymerization.
Figure 5: Thermal denaturation studies monitored by CD at 252 nm.
Figure 6: CA-mediated assembly of other oligonucleotides (RNA, PNA) and fibre functionalization.

Similar content being viewed by others

References

  1. Watson, J. D. & Crick, F. H. Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature 171, 737–738 (1953).

    Article  CAS  PubMed  Google Scholar 

  2. Choi, J. & Majima, T. Conformational changes of non-B DNA. Chem. Soc. Rev. 40, 5893–5909 (2011).

    Article  CAS  PubMed  Google Scholar 

  3. Aldaye, F. A., Palmer, A. L. & Sleiman, H. F. Assembling materials with DNA as the guide. Science 321, 1795–1799 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Egholm, M., Buchardt, O., Nielsen, P. E. & Berg, R. H. Peptide nucleic-acids (PNA)—oligonucleotide analogs with an achiral peptide backbone. J. Am. Chem. Soc. 114, 1895–1897 (1992).

    Article  CAS  Google Scholar 

  5. Egholm, M. et al. PNA hybridizes to complementary oligonucleotides obeying the Watson–Crick hydrogen-bonding rules. Nature 365, 566–568 (1993).

    Article  CAS  PubMed  Google Scholar 

  6. Chen, M. C. et al. Spontaneous prebiotic formation of a β-ribofuranoside that self-assembles with a complementary heterocycle. J. Am. Chem. Soc. 136, 5640–5646 (2014).

    Article  CAS  PubMed  Google Scholar 

  7. Malyshev, D. A. et al. A semi-synthetic organism with an expanded genetic alphabet. Nature 509, 385–388 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yang, Z., Chen, F., Chamberlin, S. G. & Benner, S. A. Expanded genetic alphabets in the polymerase chain reaction. Angew. Chem. Int. Ed. 49, 177–180 (2010).

    Article  CAS  Google Scholar 

  9. Teo, Y. N. & Kool, E. T. DNA-multichromophore systems. Chem. Rev. 112, 4221–4245 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Winnacker, M. & Kool, E. T. Artificial genetic sets composed of size-expanded base pairs. Angew. Chem. Int. Ed. 52, 12498–12508 (2013).

    Article  CAS  Google Scholar 

  11. Sessler, J. L. & Jayawickramarajah, J. Functionalized base-pairs: versatile scaffolds for self-assembly. Chem. Commun. 1939–1949 (2005).

  12. Woo, S. & Rothemund, P. W. K. Programmable molecular recognition based on the geometry of DNA nanostructures. Nature Chem. 3, 620–627 (2011).

    Article  CAS  Google Scholar 

  13. Yang, H. et al. Metal–nucleic acid cages. Nature Chem. 1, 390–396 (2009).

    Article  CAS  Google Scholar 

  14. Piccirilli, J. A., Krauch, T., Moroney, S. E. & Benner, S. A. Enzymatic incorporation of a new base pair into DNA and RNA extends the genetic alphabet. Nature 343, 33–37 (1990).

    Article  CAS  PubMed  Google Scholar 

  15. Kimoto, M., Kawai, R., Mitsui, T., Yokoyama, S. & Hirao, I. An unnatural base pair system for efficient PCR amplification and functionalization of DNA molecules. Nucleic Acids Res. 37, e14 (2009).

    Article  CAS  PubMed  Google Scholar 

  16. Ogawa, A. K. et al. Efforts toward the expansion of the genetic alphabet: information storage and replication with unnatural hydrophobic base pairs. J. Am. Chem. Soc. 122, 3274–3287 (2000).

    Article  CAS  Google Scholar 

  17. Wu, Y. Q. et al. Efforts toward expansion of the genetic alphabet: optimization of interbase hydrophobic interactions. J. Am. Chem. Soc. 122, 7621–7632 (2000).

    Article  CAS  Google Scholar 

  18. Meggers, E., Holland, P. L., Tolman, W. B., Romesberg, F. E. & Schultz, P. G. A novel copper-mediated DNA base pair. J. Am. Chem. Soc. 122, 10714–10715 (2000).

    Article  CAS  Google Scholar 

  19. Shionoya, M. & Tanaka, K. Synthetic incorporation of metal complexes into nucleic acids and peptides directed toward functionalized molecules. Bull. Chem. Soc. Jpn 73, 1945–1954 (2000).

    Article  CAS  Google Scholar 

  20. Martin-Ortiz, M., Gomez-Gallego, M., Ramirez de Arellano, C. & Sierra, M. A. The selective synthesis of metallanucleosides and metallanucleotides: a new tool for the functionalization of nucleic acids. Chem. Eur. J. 18, 12603–12608 (2012).

    Article  CAS  PubMed  Google Scholar 

  21. Chen, H., Meena & McLaughlin, L. W. A Janus-wedge DNA triplex with A-W1-T and G-W2-C base triplets. J. Am. Chem. Soc. 130, 13190–13191 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. Shin, D. & Tor, Y. Bifacial nucleoside as a surrogate for both T and A in duplex DNA. J. Am. Chem. Soc. 133, 6926–6929 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yang, H. Z., Pan, M. Y., Jiang, D. W. & He, Y. Synthesis of Janus type nucleoside analogues and their preliminary bioactivity. Org. Biomol. Chem. 9, 1516–1522 (2011).

    Article  CAS  PubMed  Google Scholar 

  24. Pan, M.-Y. et al. Janus-type AT nucleosides: synthesis, solid and solution state structures. Org. Biomol. Chem. 9, 5692–5702 (2011).

    Article  CAS  PubMed  Google Scholar 

  25. Largy, E., Liu, W., Hasan, A. & Perrin, D. M. Base-pairing behavior of a carbocyclic Janus–AT nucleoside analogue capable of recognizing A and T within a DNA duplex. ChemBioChem 14, 2199–2208 (2013).

    Article  CAS  PubMed  Google Scholar 

  26. Marsh, A., Silvestri, M. & Lehn, J. M. Self-complementary hydrogen bonding heterocycles designed for the enforced self-assembly into supramolecular macrocycles. Chem. Commun. 1527–1528 (1996).

  27. Zeng, Y., Pratumyot, Y., Piao, X. & Bong, D. Discrete assembly of synthetic peptide–DNA triplex structures from polyvalent melamine–thymine bifacial recognition. J. Am. Chem. Soc. 134, 832–835 (2012).

    Article  CAS  PubMed  Google Scholar 

  28. Chaput, J. C. & Switzer, C. A DNA pentaplex incorporating nucleobase quintets. Proc. Natl Acad. Sci. USA 96, 10614–10619 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jiang, D. & Seela, F. Oligonucleotide duplexes and multistrand assemblies with 8-aza-2′-deoxyisoguanosine: a fluorescent isoG(d) shape mimic expanding the genetic alphabet and forming ionophores. J. Am. Chem. Soc. 132, 4016–4024 (2010).

    Article  CAS  PubMed  Google Scholar 

  30. Polak, M. & Hud, N. V. Complete disproportionation of duplex poly(dT)·poly(dA) into triplex poly(dT)·poly(dA)·poly(dT) and poly(dA) by coralyne. Nucleic Acids Res. 30, 983–992 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Persil, Ö., Santai, C. T., Jain, S. S. & Hud, N. V. Assembly of an antiparallel homo-adenine DNA duplex by small-molecule binding. J. Am. Chem. Soc. 126, 8644–8645 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Jain, S. S., Polak, M. & Hud, N. V. Controlling nucleic acid secondary structure by intercalation: effects of DNA strand length on coralyne-driven duplex disproportionation. Nucleic Acids Res. 31, 4608–4615 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Çetinkol, O. P. & Hud, N. V. Molecular recognition of poly(A) by small ligands: an alternative method of analysis reveals nanomolar, cooperative and shape-selective binding. Nucleic Acids Res. 37, 611–621 (2009).

    Article  CAS  PubMed  Google Scholar 

  34. Park, K. S. & Park, H. G. A DNA-templated silver nanocluster probe for label-free, turn-on fluorescence-based screening of homo-adenine binding molecules. Biosens. Bioelectron. 64, 618–624 (2015).

    Article  CAS  PubMed  Google Scholar 

  35. Balasubramanian, S., Hurley, L. H. & Neidle, S. Targeting G-quadruplexes in gene promoters: a novel anticancer strategy? Nature Rev. Drug Discov. 10, 261–275 (2011).

    Article  CAS  Google Scholar 

  36. Rich, A., Davies, D. R., Crick, F. H. & Watson, J. D. The molecular structure of polyadenylic acid. J. Mol. Biol. 3, 71–86 (1961).

    Article  CAS  PubMed  Google Scholar 

  37. Chakraborty, S., Sharma, S., Maiti, P. K. & Krishnan, Y. The poly dA helix: a new structural motif for high performance DNA-based molecular switches. Nucleic Acids Res. 37, 2810–2817 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zerkowski, J. A., Seto, C. T. & Whitesides, G. M. Solid-state structures of rosette and crinkled tape motifs derived from the cyanuric acid melamine lattice. J. Am. Chem. Soc. 114, 5473–5475 (1992).

    Article  CAS  Google Scholar 

  39. Rakotondradany, F. et al. Hydrogen-bond self-assembly of DNA-analogues into hexameric rosettes. Chem. Commun. 5441–5443 (2005).

  40. Roy, B., Bairi, P. & Nandi, A. K. Supramolecular assembly of melamine and its derivatives: nanostructures to functional materials. RSC Adv. 4, 1708–1734 (2014).

    Article  CAS  Google Scholar 

  41. Berova, N., Nakanishi, K. & Woody, R. Circular Dichroism: Principles and Applications (Wiley-VCH, 2000).

    Google Scholar 

  42. De Greef, T. F. et al. Supramolecular polymerization. Chem. Rev. 109, 5687–5754 (2009).

    Article  CAS  PubMed  Google Scholar 

  43. Safaee, N. et al. Structure of the parallel duplex of poly(A) RNA: evaluation of a 50 year-old prediction. Angew. Chem. Int. Ed. 52, 10370–10373 (2013).

    Article  CAS  Google Scholar 

  44. Krishnan, Y. & Simmel, F. C. Nucleic acid based molecular devices. Angew. Chem. Int. Ed. 50, 3124–3156 (2011).

    Article  CAS  Google Scholar 

  45. Ma, M. & Bong, D. Determinants of cyanuric acid and melamine assembly in water. Langmuir 27, 8841–8853 (2011).

    Article  CAS  PubMed  Google Scholar 

  46. Cafferty, B. J. et al. Efficient self-assembly in water of long noncovalent polymers by nucleobase analogues. J. Am. Chem. Soc. 135, 2447–2450 (2013).

    Article  CAS  PubMed  Google Scholar 

  47. Whitesides, G. M. et al. Noncovalent synthesis: using physical–organic chemistry to make aggregates. Acc. Chem. Res. 28, 37–44 (1995).

    Article  CAS  Google Scholar 

  48. Timmerman, P. et al. NMR diffusion spectroscopy for the characterization of multicomponent hydrogen-bonded assemblies in solution. J. Chem. Soc. Perkin Trans. 2, 2077–2089 (2000).

  49. Davies, R. J. & Davidson, N. Base pairing equilibria between polynucleotides and complementary monomers. Biopolymers 10, 1455–1479 (1971).

    Article  CAS  PubMed  Google Scholar 

  50. Davies, R. J. Complexes of poly(adenylic acid) with complementary monomers. Eur. J. Biochem. 61, 225–236 (1976).

    Article  CAS  PubMed  Google Scholar 

  51. Pyle, A. M. et al. Mixed-ligand complexes of ruthenium(II): factors governing binding to DNA. J. Am. Chem. Soc. 111, 3051–3058 (1989).

    Article  CAS  Google Scholar 

  52. Chworos, A. et al. Building programmable jigsaw puzzles with RNA. Science 306, 2068–2072 (2004).

    Article  CAS  PubMed  Google Scholar 

  53. Hao, C. et al. Construction of RNA nanocages by re-engineering the packaging RNA of Phi29 bacteriophage. Nature Commun. 5, 3890 (2014).

    Article  CAS  Google Scholar 

  54. Geary, C., Rothemund, P. W. K. & Andersen, E. S. A single-stranded architecture for cotranscriptional folding of RNA nanostructures. Science 345, 799–804 (2014).

    Article  CAS  PubMed  Google Scholar 

  55. Weill, L., Belloc, E., Bava, F.-A. & Mendez, R. Translational control by changes in poly(A) tail length: recycling mRNAs. Nature Struct. Mol. Biol. 19, 577–585 (2012).

    Article  CAS  Google Scholar 

  56. Di Giammartino, D. C., Nishida, K. & Manley, J. L. Mechanisms and consequences of alternative polyadenylation. Mol. Cell 43, 853–866 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge the Natural Sciences and Engineering Research Council of Canada (NSERC), the Canada Research Chairs Program, the Canada Foundation for Innovation, the Centre for Self-Assembled Chemical Structures and the Canadian Institute for Advanced Research for financial support. N.A. and A.G. thank NSERC and Fonds Québécois de la Recherche sur la Nature et les Technologies for doctoral fellowships. C.J.S. thanks NSERC for a Banting Postdoctoral Fellowship. H.F.S. is a Cottrell Scholar of the Research Corporation.

Author information

Authors and Affiliations

Authors

Contributions

H.F.S. and F.A. conceived the study. N.A., F.A. and H.F.S. designed the experiments. N.A. performed the experimental studies with assistance from A.A.G. (DNA synthesis), C.J.S. (adenosine/CA crystal growth and X-ray analysis), A.P. (VPO) and V.T. (synthesis of TIPDS-dA and hex-CA). N.A. and H.F.S analysed the data and wrote the manuscript.

Corresponding author

Correspondence to Hanadi F. Sleiman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 3101 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avakyan, N., Greschner, A., Aldaye, F. et al. Reprogramming the assembly of unmodified DNA with a small molecule. Nature Chem 8, 368–376 (2016). https://doi.org/10.1038/nchem.2451

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2451

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing