Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Catching elusive glycosyl cations in a condensed phase with HF/SbF5 superacid

Abstract

Glycosyl cations are universally accepted key ionic intermediates in the mechanism of glycosylation, the reaction that covalently links carbohydrates to other molecules. These ions have remained hypothetical species so far because of their extremely short life in organic media as a consequence of their very high reactivity. Here, we report the use of liquid hydrofluoric acid–antimony pentafluoride (HF/SbF5) superacid to generate and stabilize the glycosyl cations derived from peracetylated 2-deoxy and 2-bromoglucopyranose in a condensed phase. Their persistence in this superacid medium allows their three-dimensional structure to be studied by NMR, aided by complementary computations. Their deuteration further confirms the impact of the structure of the glycosyl cation on the stereochemical outcome of its trapping.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Prototype of the glycosylation mechanism and ionic species observed by NMR.
Figure 2: Generation and NMR spectra of 2-deoxyglucosyl oxocarbenium ion 6 in HF/SbF5 at −40 °C.
Figure 3: Conformational preferences of 2-deoxy- and 2-bromo-glucosyl oxocarbenium ions 6 and 7 in HF/SbF5 superacid.
Figure 4: Monitoring of the chemical stability of 2-deoxyglucosyl oxocarbenium ion 6 in HF/SbF5 by 1H-NMR.
Figure 5: Generation of 2-deoxy- and 2-bromo-glucosyl oxocarbenium ions 6 and 7 in HF/SbF5 followed by their trapping with methanol (40 equiv.) or cyclohexane-d12 (2 equiv.).

Similar content being viewed by others

References

  1. Transforming Glycoscience: A Roadmap for the Future (The National Academies Press, 2012).

  2. Boltje, T. J., Buskas, T. & Boons, G. J. Opportunities and challenges in synthetic oligosaccharide and glycoconjugate research. Nature Chem. 1, 611–622 (2009).

    Article  CAS  Google Scholar 

  3. Demchenko, A. V. Handbook of Chemical Glycosylation: Advances in Stereoselectivity and Therapeutic Relevance (Wiley, 2008).

    Book  Google Scholar 

  4. Zhu, X. & Schmidt, R. R. New principles for glycosidic bond formation. Angew. Chem. Int. Ed. 48, 1900–1934 (2009).

    Article  CAS  Google Scholar 

  5. Michael, A. On the synthesis of helicin and phenol glucoside. Am. Chem. J. 1, 305–312 (1879).

    Article  Google Scholar 

  6. Fischer, E. Ueber die glucoside der alkohole. Ber. Deutsch Chem. Ges. 26, 2400–2412 (1893).

    Article  Google Scholar 

  7. Lemieux, R. U., Hendriks, K. B., Stick, R. V. & James, K. Halide ion catalyzed glycosylation reactions. Syntheses of α-linked disaccharides. J. Am. Chem. Soc. 97, 4056–4062 (1975).

    Article  CAS  Google Scholar 

  8. Ayala, L., Lucero, C. G., Romero, J. A. C., Tabacco, S. A. & Woerpel, K. A. Stereochemistry of nucleophilic substitution reactions depending upon substituent: evidence for electrostatic stabilization of pseudoaxial conformers of oxocarbenium ions by heteroatom substituents. J. Am. Chem. Soc. 125, 15521–15528 (2003).

    Article  CAS  Google Scholar 

  9. Frihed, T. G., Bols, M. & Pedersen, C. M. Mechanisms of glycosylation reactions studied by low-temperature nuclear magnetic resonance. Chem. Rev. 115, 4963–5013 (2015).

    Article  CAS  Google Scholar 

  10. Saito, K. et al. Indirect cation-flow method flash generation of alkoxycarbenium ions and studies on the stability of glycosyl cations. Angew. Chem. Int. Ed. 50, 5153–5156 (2011).

    Article  CAS  Google Scholar 

  11. Whitfield, D. M. Computational studies of the role of the glycopyranosyl oxacarbenium ions in glycobiology and glycochemistry. Adv. Carbohydr. Chem. Biochem. 62, 83–159 (2009).

    Article  CAS  Google Scholar 

  12. Denekamp, C. & Sandlers, Y. Anomeric distinction and oxonium ion formation in acetylated glycosides. J. Mass Spectrom. 40, 765–771 (2005).

    Article  CAS  Google Scholar 

  13. Huang, M. et al. Dissecting the mechanisms of a class of chemical glycosylation using primary 13C kinetic isotope effects. Nature Chem. 4, 663–667 (2012).

    Article  CAS  Google Scholar 

  14. Huang, M., Retailleau, P., Bohé, L. & Crich, D. Cation clock permits distinction between the mechanisms of α- and β-O- and β-C-glycosylation in the mannopyranose series: evidence for the existence of a mannopyranosyl oxocarbenium ion. J. Am. Chem. Soc. 134, 14746–14749 (2012).

    Article  CAS  Google Scholar 

  15. Bohé, L. & Crich, D. A propos of glycosyl cations and the mechanism of chemical glycosylation. C.R. Chimie 14, 3–16 (2011).

    Article  Google Scholar 

  16. Bohé, L. & Crich, D. A propos of glycosyl cations and the mechanism of chemical glycosylation the current state of the art. Carbohydr. Res. 403, 48–59 (2015).

    Article  Google Scholar 

  17. Amyes, T. L. & Jencks, W. P. Lifetimes of oxocarbenium ions in aqueous solution from common ion inhibition of the solvolysis of α-azido ethers by added azide ion. J. Am. Chem. Soc. 111, 7888–7900 (1989).

    Article  CAS  Google Scholar 

  18. Olah, G. A., Prakash, G. K. S., Molnar, A. & Sommer, J. Superacid Chemistry (Wiley, 2009).

    Book  Google Scholar 

  19. Olah, G. A. et al. Stable carbonium ions. Alkylcarbonium hexafluoroantimonates. J. Am. Chem. Soc. 86, 1360–1373 (1964).

    Article  CAS  Google Scholar 

  20. Olah, G. A. & Bollinger, J. M. Stable carbonium ions. Primary alkoxycarbonium ions. J. Am. Chem. Soc. 89, 2993–2996 (1967).

    Article  CAS  Google Scholar 

  21. Akien, G. R. & Subramaniam, B. In 247th ACS National Meeting and Exhibition, paper CARB-96 (2014).

  22. Matsumoto, K., Ueoka, K., Suzuki, S., Suga, S. & Yoshida, J. Direct and indirect electrochemical generation of alkoxycarbenium ion pools from thioacetals. Tetrahedron 65, 10901–10907 (2009).

    Article  CAS  Google Scholar 

  23. Olah, G. A. et al. 17O and 13C NMR/ab initio/IGLO/GIAO-MP2 study of oxonium and carboxonium ions (dications) and comparison with experimental data. J. Am. Chem. Soc. 119, 8035–8042 (1997).

    Article  CAS  Google Scholar 

  24. Olah, G. A., O'Brien, D. H. & White, A. M. Stable carbonium ions. LII. Protonated esters and their cleavage in fluorosulfonic acid–antimony pentafluoride solution. J. Am. Chem. Soc. 89, 5694–5700 (1967).

    Article  CAS  Google Scholar 

  25. Lemieux, R. U. Some implications in carbohydrate chemistry of theories relating to mechanisms of replacement reactions. Adv. Carbohydr. Chem. 9, 1–57 (1954).

    CAS  PubMed  Google Scholar 

  26. Zeng, Y., Wang, Z., Whitfield, D. & Huang, X. Installation of electron-donating protective groups, a strategy for glycosylating unreactive thioglycosyl acceptors using the preactivation-based glycosylation method. J. Org. Chem. 73, 7952–7962 (2008).

    Article  CAS  Google Scholar 

  27. Hodosi, G. & Krepinsky, J. J. Polymer-supported solution synthesis of oligosaccharides: probing glycosylations of MPEG-DOX-OH with 2-acetamidoglycopyranosyl derivatives. Synlett 159–162 (1996).

  28. Mertens, A., Lammertsma, K., Arvanaghi, M. & Olah, G. A. Onium ions. 26. Aminodiazonium ions: preparation, 1H, 13C, and 15N NMR structural studies, and electrophilic amination of aromatics. J. Am. Chem. Soc. 105, 5657–5660 (1983).

    Article  Google Scholar 

  29. Hou, D. & Lowary, T. L. Recent advances in the synthesis of 2-deoxy-glycosides. Carbohydr. Res. 344, 1911–1940 (2009).

    Article  CAS  Google Scholar 

  30. Bucher, C. & Gilmour, R. Fluorine-directed glycosylation. Angew. Chem. Int. Ed. 49, 8724–8728 (2010).

    Article  CAS  Google Scholar 

  31. Woods, R. J., Andrews, C. W. & Bowen, J. P. Molecular mechanical investigations of the properties of oxocarbenium ions. II. Application to glycoside hydrolysis. J. Am. Chem. Soc. 114, 859–864 (1992).

    Article  CAS  Google Scholar 

  32. Miljkovic, M., Yeagley, D., Deslongchamps, P. & Dory, Y. L. Experimental and theoretical evidence of through-space electrostatic stabilization of the incipient oxocarbenium ion by an axially oriented electronegative substituent during glycopyranoside acetolysis. J. Org. Chem. 62, 7597–7604 (1997).

    Article  CAS  Google Scholar 

  33. Olah, G. A., Laali, K. K., Wang, Q. & Prakash, G. K. S. Onium Ions (Wiley, 1998).

    Google Scholar 

  34. Walwoort, M. T. et al. The impact of oxacarbenium ion conformers on the stereochemical outcome of glycosylations. Carbohydr. Res. 345, 1252–1263 (2010).

    Article  Google Scholar 

  35. Nukada, T., Bérces, A. & Withfield, D. M. Can the stereochemical outcome of glycosylation reactions be controlled by the conformational preferences of the glycosyl donor? Carbohydr. Res. 337, 765–774 (2002).

    Article  CAS  Google Scholar 

  36. Olah, G. A. & Klumpp, D. Superelectrophiles and their Chemistry (Wiley, 2008).

    Google Scholar 

  37. Lafitte, C., Jouannetaud, M.-P., Jacquesy, J.-C., Fahy, J. & Duflos, A. Stereoselective ionic hydrogenation of Vinca alcaloids and vinorelbine in superacids: an access to 4′R-reduced analogs. Tetrahedron Lett. 39, 8281–8282 (1998).

    Article  CAS  Google Scholar 

  38. Sommer, J. & Bukala, J. Selective electrophilic activation of alkanes. Acc. Chem. Res. 26, 370–376 (1993).

    Article  CAS  Google Scholar 

  39. Cumpstey, I. On a so-called ‘kinetic anomeric effect’ in chemical glycosylation. Org. Biomol. Chem. 10, 2503–2508 (2012).

    Article  CAS  Google Scholar 

  40. Hammond, G. S. A correlation of reaction rates. J. Am. Chem. Soc. 77, 334–338 (1955).

    Article  CAS  Google Scholar 

  41. Rodriguez, M. A. et al. Stereoselective synthesis of 2-deoxy-2-iodo-glycosides from furanoses. A new route to 2-deoxy-glycosides and 2- deoxy-oligosaccharides of ribo and xylo configuration. J. Org. Chem. 70, 10297–10310 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

A.M. acknowledges the Agence Nationale de la Recherche (ANR) for a PhD grant (project ANR-12-BS07-0003-01). N.P. acknowledges the Foundation for the Development of the Chemistry of Natural Products of the French Academy of Sciences for a post-doctoral fellowship. J.D., A.M.-M., S.T. and Y.B. acknowledge the French Centre National de la Recherche Scientifique, (PICS program), the ANR (project ANR-12-BS07-0003-01), the Regional Council Poitou-Charentes and the University of Poitiers for financial support. A.A. and J.J.-B. acknowledge the Centro de Supercomputación de Galicia (CESGA) for computational resources and the Ministery of Economy and Competitiveness of Spain for funding (project CTQ2012-32025).

Author information

Authors and Affiliations

Authors

Contributions

Y.B. and P.S. initiated the study. Y.B. and S.T. designed the study. A.M., N.P. and J.D. synthesized the sugar precursors. A.M., A.M.M. and N.P. performed the superacid experiments. A.M., A.M.M., J.D., S.T., Y.B., J.J.-B. and A.A. analysed the NMR spectra. J.J.-B. and A.A. performed the computation. Y.B., J.J.B. and S.T. wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to J. Jiménez-Barbero, S. Thibaudeau or Y. Blériot.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 3371 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martin, A., Arda, A., Désiré, J. et al. Catching elusive glycosyl cations in a condensed phase with HF/SbF5 superacid. Nature Chem 8, 186–191 (2016). https://doi.org/10.1038/nchem.2399

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2399

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing