Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Direct observation of subpicosecond vibrational dynamics in photoexcited myoglobin

Abstract

Determining the initial pathway for ultrafast energy redistribution within biomolecules is a challenge, and haem proteins, for which energy can be deposited locally in the haem moiety using short light pulses, are suitable model systems to address this issue. However, data acquired using existing experimental techniques that fail to combine sufficient structural sensitivity with adequate time resolution have resulted in alternative hypotheses concerning the interplay between energy flow among highly excited vibrational levels and potential concomitant electronic processes. By developing a femtosecond-stimulated Raman set-up, endowed with the necessary tunability to take advantage of different resonance conditions, here we visualize the temporal evolution of energy redistribution over different vibrational modes in myoglobin. We establish that the vibrational energy initially stored in the highly excited Franck–Condon manifold is transferred with different timescales into low- and high-frequency modes, prior to slow dissipation through the protein. These findings demonstrate that a newly proposed mechanism involving the population dynamics of specific vibrational modes settles the controversy on the existence of transient electronic intermediates.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Haem photolysis/photoexcitation.
Figure 2: TA experiment in deoxy-Mb.
Figure 3: FSRRS snapshots of vibrational-energy flow in Mb.
Figure 4: Modelling subpicosecond vibrational dynamics in Mb.
Figure 5: Proposed energy-transfer mechanism in Mb.

Similar content being viewed by others

References

  1. Leitner, D. M. Energy flow in proteins. Annu. Rev. Phys. Chem. 59, 233–259 (2008).

    CAS  PubMed  Google Scholar 

  2. Mizutani, Y. & Kitagawa, T. Direct observation of cooling of heme upon photodissociation of carbonmonoxy myoglobin. Science 278, 443–446 (1997).

    CAS  PubMed  Google Scholar 

  3. Miller, R. J. D. Vibrational energy relaxation and structural dynamics of heme proteins. Annu. Rev. Phys. Chem. 42, 581–614 (1991).

    CAS  PubMed  Google Scholar 

  4. Henry, E. R., Eaton, W. A. & Hochstrasser, R. M. Molecular dynamics simulations of cooling in laser-excited heme proteins. Proc. Natl Acad. Sci. USA 83, 8982–8986 (1986).

    CAS  PubMed  Google Scholar 

  5. Mukamel, S. Principles of Nonlinear Optical Spectroscopy (Oxford Univ. Press, 1995).

    Google Scholar 

  6. Brunori, M. Myoglobin strikes back. Protein Sci. 19, 195–201 (2010).

    CAS  PubMed  Google Scholar 

  7. Lim, M., Jackson, T. A. & Anfinrud, P. A. Femtosecond near-IR absorbance study of photoexcited myoglobin: dynamics of electronic and thermal relaxation. J. Phys. Chem. 100, 12043–12051 (1996).

    CAS  Google Scholar 

  8. Ye, X. et al. Investigations of heme protein absorption line shapes, vibrational relaxation, and resonance Raman scattering on ultrafast time scales. J. Phys. Chem. A 107, 8156–8165 (2003).

    CAS  Google Scholar 

  9. Ye, X., Demidov, A. & Champion, P. M. Measurements of the photodissociation quantum yields of MbNO and MbO2 and the vibrational relaxation of the six-coordinate heme species. J. Am. Chem. Soc. 124, 5914–5924 (2002).

    CAS  PubMed  Google Scholar 

  10. Kholodenko, Y., Volk, M., Gooding, E. & Hochstrasser, R. Energy dissipation and relaxation processes in deoxy myoglobin after photoexcitation in the Soret region. Chem. Phys. 259, 71–87 (2000).

    CAS  Google Scholar 

  11. Armstrong, M. R., Ogilvie, J. P., Cowan, M. L., Nagy, A. M. & Miller, R. J. D. Observation of the cascaded atomic-to-global length scales driving protein motion. Proc. Natl Acad. Sci. USA 100, 4990–4994 (2003).

    CAS  PubMed  Google Scholar 

  12. Groot, M.-L. et al. Coherent infrared emission from myoglobin crystals: an electric field measurement. Proc. Natl Acad. Sci. USA 99, 1323–1328 (2002).

    CAS  PubMed  Google Scholar 

  13. Franzen, S., Bohn, B., Poyart, C. & Martin, J. L. Evidence for sub-picosecond heme doming in hemoglobin and myoglobin: a time-resolved resonance Raman comparison of carbonmonoxy and deoxy species. Biochemistry 34, 1224–1237 (1995).

    CAS  PubMed  Google Scholar 

  14. Petrich, J. W., Martin, J. L., Houde, D., Poyart, C. & Orszag, A. Time-resolved Raman spectroscopy with subpicosecond resolution: vibrational cooling and delocalization of strain energy in photodissociated (carbonmonoxy)hemoglobin. Biochemistry 26, 7914–7923 (1987).

    CAS  PubMed  Google Scholar 

  15. Kruglik, S. G., Lambry, J.-C., Martin, J.-L., Vos, M. H. & Negrerie, M. Sub-picosecond Raman spectrometer for time-resolved studies of structural dynamics in heme proteins. J. Raman Spectrosc. 42, 265–275 (2011).

    CAS  Google Scholar 

  16. Simpson, M. C. et al. Transient Raman observations of heme electronic and vibrational photodynamics in deoxyhemoglobin. J. Am. Chem. Soc. 119, 5110–5117 (1997).

    CAS  Google Scholar 

  17. Li, P., Sage, J. T. & Champion, P. M. Probing picosecond processes with nanosecond lasers: electronic and vibrational relaxation dynamics of heme proteins. J. Chem. Phys. 97, 3214–3227 (1992).

    CAS  Google Scholar 

  18. Li, X. Y., Czernuszewicz, R. S., Kincaid, J. R., Stein, P. & Spiro, T. G. Consistent porphyrin force field. 2. Nickel octaethylporphyrin skeletal and substituent mode assignments from nitrogen-15, meso-d4, and methylene-d16 Raman and infrared isotope shifts. J. Phys. Chem. 94, 47–61 (1990).

    CAS  Google Scholar 

  19. Cornelius, P. A., Steele, A. W., Chernoff, D. A. & Hochstrasser, R. M. Different dissociation pathways and observation of an excited deoxy state in picosecond photolysis of oxy- and carboxymyoglobin. Proc. Natl Acad. Sci. USA 78, 7526–7529 (1981).

    CAS  PubMed  Google Scholar 

  20. Lim, M., Jackson, T. & Anfinrud, P. Binding of CO to myoglobin from a heme pocket docking site to form nearly linear Fe–C–O. Science 269, 962–966 (1995).

    CAS  PubMed  Google Scholar 

  21. Petrich, J. W., Poyart, C. & Martin, J. L. Photophysics and reactivity of heme proteins: a femtosecond absorption study of hemoglobin, myoglobin, and protoheme. Biochemistry 27, 4049–4060 (1988).

    CAS  PubMed  Google Scholar 

  22. Schneebeck, M., Vigil, L. & Ondrias, M. Mode-selective energy localization during photoexcitation of deoxyhemoglobin and heme model complexes. Chem. Phys. Lett. 215, 251–256 (1993).

    CAS  Google Scholar 

  23. Franzen, S., Kiger, L., Poyart, C. & Martin, J.-L. Heme photolysis occurs by ultrafast excited state metal-to-ring charge transfer. Biophys. J. 80, 2372–2385 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Consani, C., Auböck, G., Bräm, O., van Mourik, F. & Chergui, M. A cascade through spin states in the ultrafast haem relaxation of met-myoglobin. J. Chem. Phys. 140, 025103 (2014).

    PubMed  Google Scholar 

  25. Levantino, M. et al. Ultrafast myoglobin structural dynamics observed with an X-ray free-electron laser. Nature Commun. 6, 6772 (2015).

    CAS  Google Scholar 

  26. Kukura, P., McCamant, D. W. & Mathies, R. A. Femtosecond stimulated Raman spectroscopy. Annu. Rev. Phys. Chem. 58, 461–488 (2007).

    CAS  PubMed  Google Scholar 

  27. Champion, P. M. Following the flow of energy in biomolecules. Science 310, 980–982 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Mukamel, S. & Biggs, J. D. Communication: comment on the effective temporal and spectral resolution of impulsive stimulated Raman signals. J. Chem. Phys. 134, 161101 (2011).

    PubMed  PubMed Central  Google Scholar 

  29. Fumero, G., Batignani, G., Dorfman, K. E., Mukamel, S. & Scopigno, T. On the resolution limit of femtosecond stimulated Raman spectroscopy: modelling fifth-order signals with overlapping pulses. ChemPhysChem 16, 3438–3443 (2015).

    CAS  PubMed  Google Scholar 

  30. Sagnella, D. E., Straub, J. E., Jackson, T. A., Lim, M. & Anfinrud, P. A. Vibrational population relaxation of carbon monoxide in the heme pocket of photolyzed carbonmonoxy myoglobin: comparison of time-resolved mid-IR absorbance experiments and molecular dynamics simulations. Proc. Natl Acad. Sci. USA 96, 14324–14329 (1999).

    CAS  PubMed  Google Scholar 

  31. Batignani, G. et al. Electronic resonances in broadband stimulated Raman spectroscopy. Sci. Rep. 6, 18445 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Stallard, B. R., Champion, P. M., Callis, P. R. & Albrecht, A. C. Advances in calculating Raman excitation profiles by means of the transform theory. J. Chem. Phys. 78, 712–722 (1983).

    CAS  Google Scholar 

  33. Siebrand, W. Radiationless transitions in polyatomic molecules. II. Triplet-ground-state transitions in aromatic hydrocarbons. J. Chem. Phys. 47, 2411–2422 (1967).

    CAS  Google Scholar 

  34. Englman, R. & Jortner, J. The energy gap law for radiationless transitions in large molecules. Mol. Phys. 18, 145–164 (1970).

    CAS  Google Scholar 

  35. Rosca, F. et al. Investigations of anharmonic low-frequency oscillations in heme proteins. J. Phys. Chem. A 106, 3540–3552 (2002).

    CAS  Google Scholar 

  36. Harbola, U., Umapathy, S. & Mukamel, S. Loss and gain signals in broadband stimulated-Raman spectra: theoretical analysis. Phys. Rev. A 88, 011801 (2013).

    Google Scholar 

  37. Loparo, J. J., Cheatum, C. M., Ondrias, M. R. & Simpson, M. Transient Raman observations of heme vibrational dynamics in five-coordinate iron porphyrins. Chem. Phys. 286, 353–374 (2003).

    CAS  Google Scholar 

  38. Leitner, D. M. Frequency-resolved communication maps for proteins and other nanoscale materials. J. Chem. Phys. 130, 195101 (2009).

    PubMed  Google Scholar 

  39. Yoshizawa, M., Hattori, Y. & Kobayashi, T. Femtosecond time-resolved resonance Raman gain spectroscopy in polydiacetylene. Phys. Rev. B 49, 13259–13262 (1994).

    CAS  Google Scholar 

  40. McCamant, D. W., Kukura, P., Yoon, S. & Mathies, R. A. Femtosecond broadband stimulated Raman spectroscopy: apparatus and methods. Rev. Sci. Instrum. 75, 4971–4980 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Kukura, P., McCamant, D. W., Yoon, S., Wandschneider, D. B. & Mathies, R. A. Structural observation of the primary isomerization in vision with femtosecond-stimulated Raman. Science 310, 1006–1009 (2005).

    CAS  PubMed  Google Scholar 

  42. Dietze, D. R. & Mathies, R. A. Femtosecond stimulated Raman spectroscopy. ChemPhysChem 17, 1224–1251 (2016).

    CAS  PubMed  Google Scholar 

  43. Batignani, G. et al. Probing ultrafast photo-induced dynamics of the exchange energy in a Heisenberg antiferromagnet. Nature Photon. 9, 506–510 (2015).

    CAS  Google Scholar 

  44. Pontecorvo, E. et al. Femtosecond stimulated Raman spectrometer in the 320–520 nm range. Opt. Express 19, 1107–1112 (2011).

    CAS  PubMed  Google Scholar 

  45. Pontecorvo, E., Ferrante, C., Elles, C. G. & Scopigno, T. Spectrally tailored narrowband pulses for femtosecond stimulated Raman spectroscopy in the range 330–750 nm. Opt. Express 21, 6866–6872 (2013).

    CAS  PubMed  Google Scholar 

  46. Weigel, A. & Ernsting, N. Excited stilbene: intramolecular vibrational redistribution and solvation studied by femtosecond stimulated Raman spectroscopy. J. Phys. Chem. B 114, 7879–7893 (2010).

    CAS  PubMed  Google Scholar 

  47. Pontecorvo, E., Ferrante, C., Elles, C. G. & Scopigno, T. Structural rearrangement accompanying the ultrafast electrocyclization reaction of a photochromic molecular switch. J. Phys. Chem. B 118, 6915–6921 (2014).

    CAS  PubMed  Google Scholar 

  48. Laimgruber, S., Schachenmayr, H., Schmidt, B., Zinth, W. & Gilch, P. A femtosecond stimulated Raman spectrograph for the near ultraviolet. Appl. Phys. B 85, 557–564 (2006).

    CAS  Google Scholar 

  49. Kloz, M., van Grondelle, R. & Kennis, J. T. Correction for the time dependent inner filter effect caused by transient absorption in femtosecond stimulated Raman experiment. Chem. Phys. Lett. 544, 94–101 (2012).

    CAS  Google Scholar 

  50. Weigel, A. et al. Femtosecond stimulated Raman spectroscopy of flavin after optical excitation. J. Phys. Chem. B 115, 3656–3680 (2011).

    CAS  PubMed  Google Scholar 

  51. Kruglik, S. G. et al. Picosecond primary structural transition of the heme is retarded after nitric oxide binding to heme proteins. Proc. Natl Acad. Sci. USA 107, 13678–13683 (2010).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

T.S. thanks A. Arcovito for early discussions on the potential impact of an FSRS experiment in Mb, and acknowledges an inspiring visit to the Mathies lab. M. Aschi, G. Batignani, P. Champion, M. Garavelli, P. Kukura, Y. Mizutani, S. Kruglik and S. Mukamel provided invaluable input to this work. The authors thank B. Vallone and the Dipartimento di Scienze Biochimiche and Istituto Pasteur-Fondazione Cenci Bolognetti of Università di Roma La Sapienza for support with the sample preparation. T.S. is especially grateful to M. Brunori for continued support and critical insights. This research has received funding from the European Research Council under the European Union Seventh Framework Program (FP7/2007–2013) and no. 207916 (FEMTOSCOPY).

Author information

Authors and Affiliations

Authors

Contributions

T.S. directed the research. E.P. led the experimental activity with the assistance of C.F. and support from G.C. and T.S. C.F. performed data analysis and numerical modelling with the assistance of E.P. T.S. wrote the manuscript with C.F. and M.H.V. All the authors discussed the results and implications and commented on the manuscript.

Corresponding author

Correspondence to T. Scopigno.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1191 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferrante, C., Pontecorvo, E., Cerullo, G. et al. Direct observation of subpicosecond vibrational dynamics in photoexcited myoglobin. Nature Chem 8, 1137–1143 (2016). https://doi.org/10.1038/nchem.2569

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2569

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing