Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Enabling singlet fission by controlling intramolecular charge transfer in π-stacked covalent terrylenediimide dimers

Abstract

When an assembly of two or more molecules absorbs a photon to form a singlet exciton, and the energetics and intermolecular interactions are favourable, the singlet exciton can rapidly and spontaneously produce two triplet excitons by singlet fission. To understand this process is important because it may prove to be technologically significant for enhancing solar-cell performance. Theory strongly suggests that charge-transfer states are involved in singlet fission, but their role has remained an intriguing puzzle and, up until now, no molecular system has provided clear evidence for such a state. Here we describe a terrylenediimide dimer that forms a charge-transfer state in a few picoseconds in polar solvents, and undergoes equally rapid, high-yield singlet fission in nonpolar solvents. These results show that adjusting the charge-transfer-state energy relative to those of the exciton states can serve to either inhibit or promote singlet fission.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Steady-state characterization of TDI systems.
Figure 2: Transient absorption spectra of TDI systems in CH2Cl2.
Figure 3: Triplet characterization in TDI dimer 2.
Figure 4
Figure 5: Proposed schematic potential-energy surface of SF.

Similar content being viewed by others

References

  1. Singh, S., Jones, W. J., Siebrand, W., Stoicheff, B. P. & Schneider, W. G. Laser generation of excitons and fluorescence in anthracene crystals. J. Chem. Phys. 42, 330–342 (1965).

    CAS  Google Scholar 

  2. Swenberg, C. & Stacy, W. Bimolecular radiationless transitions in crystalline tetracene. Chem. Phys. Lett. 2, 327–328 (1968).

    CAS  Google Scholar 

  3. Shockley, W. & Queisser, H. J. Detailed balance limit of efficiency of p–n junction solar cells. J. Appl. Phys. 32, 510–519 (1961).

    CAS  Google Scholar 

  4. Hanna, M. C. & Nozik, A. J. Solar conversion efficiency of photovoltaic and photoelectrolysis cells with carrier multiplication absorbers. J. Appl. Phys. 100, 074510 (2006).

    Google Scholar 

  5. Smith, M. B. & Michl, J. Singlet fission. Chem. Rev. 110, 6891–6936 (2010).

    CAS  PubMed  Google Scholar 

  6. Chan, W.-L. et al. Observing the multiexciton state in singlet fission and ensuing ultrafast multielectron transfer. Science 334, 1541–1545 (2011).

    CAS  PubMed  Google Scholar 

  7. Ramanan, C., Smeigh, A. L., Anthony, J. E., Marks, T. J. & Wasielewski, M. R. Competition between singlet fission and charge separation in solution-processed blend films of 6,13-bis(triisopropylsilylethynyl)pentacene with sterically-encumbered perylene-3,4:9,10-bis(dicarboximide)s. J. Am. Chem. Soc. 134, 386–397 (2011).

    PubMed  Google Scholar 

  8. Chan, W.-L., Ligges, M. & Zhu, X. Y. The energy barrier in singlet fission can be overcome through coherent coupling and entropic gain. Nature Chem. 4, 840–845 (2012).

    CAS  Google Scholar 

  9. Roberts, S. T. et al. Efficient singlet fission discovered in a disordered acene film. J. Am. Chem. Soc. 134, 6388–6400 (2012).

    CAS  PubMed  Google Scholar 

  10. Walker, B. J., Musser, A. J., Beljonne, D. & Friend, R. H. Singlet exciton fission in solution. Nature Chem. 5, 1019–1024 (2013).

    CAS  Google Scholar 

  11. Ma, L. et al. Singlet fission in rubrene single crystal: direct observation by femtosecond pump–probe spectroscopy. Phys. Chem. Chem. Phys. 14, 8307–8312 (2012).

    CAS  PubMed  Google Scholar 

  12. Burdett, J. J. & Bardeen, C. J. Quantum beats in crystalline tetracene delayed fluorescence due to triplet pair coherences produced by direct singlet fission. J. Am. Chem. Soc. 134, 8597–8607 (2012).

    CAS  PubMed  Google Scholar 

  13. Pensack, R. D. et al. Exciton delocalization drives rapid singlet fission in nanoparticles of acene derivatives. J. Am. Chem. Soc. 137, 6790–6803 (2015).

    CAS  PubMed  Google Scholar 

  14. Margulies, E. A. et al. Sub-picosecond singlet exciton fission in cyano-substituted diaryltetracenes. Angew. Chem. Int. Ed. 54, 8679–8683 (2015).

    CAS  Google Scholar 

  15. Wang, C. & Tauber, M. J. High-yield singlet fission in a zeaxanthin aggregate observed by picosecond resonance Raman spectroscopy. J. Am. Chem. Soc. 132, 13988–13991 (2010).

    CAS  PubMed  Google Scholar 

  16. Dillon, R. J., Piland, G. B. & Bardeen, C. J. Different rates of singlet fission in monoclinic versus orthorhombic crystal forms of diphenylhexatriene. J. Am. Chem. Soc. 135, 17278–17281 (2013).

    CAS  PubMed  Google Scholar 

  17. Musser, A. J. et al. The nature of singlet exciton fission in carotenoid aggregates. J. Am. Chem. Soc. 137, 5130–5139 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Johnson, J. C., Nozik, A. J. & Michl, J. High triplet yield from singlet fission in a thin film of 1,3-diphenylisobenzofuran. J. Am. Chem. Soc. 132, 16302–16303 (2010).

    CAS  PubMed  Google Scholar 

  19. Johnson, J. C. et al. Toward designed singlet fission: solution photophysics of two indirectly coupled covalent dimers of 1,3-diphenylisobenzofuran. J. Phys. Chem. B 117, 4680–4695 (2013).

    CAS  PubMed  Google Scholar 

  20. Eaton, S. W. et al. Singlet exciton fission in polycrystalline thin films of a slip-stacked perylenediimide. J. Am. Chem. Soc. 135, 14701–14712 (2013).

    CAS  PubMed  Google Scholar 

  21. Eaton, S. W. et al. Singlet exciton fission in thin films of tert-butyl-substituted terrylenes. J. Phys. Chem. A 119, 4151–4161 (2015).

    CAS  PubMed  Google Scholar 

  22. Hartnett, P. E. et al. Effects of crystal morphology on singlet exciton fission in diketopyrrolopyrrole thin films. J. Phys. Chem. B 120, 1357–1366 (2016).

    CAS  PubMed  Google Scholar 

  23. Müller, A. M., Avlasevich, Y. S., Schoeller, W. W., Müllen, K. & Bardeen, C. J. Exciton fission and fusion in bis(tetracene) molecules with different covalent linker structures. J. Am. Chem. Soc. 129, 14240–14250 (2007).

    PubMed  Google Scholar 

  24. Margulies, E. A., Shoer, L. E., Eaton, S. W. & Wasielewski, M. R. Excimer formation in cofacial and slip-stacked perylene-3,4:9,10-bis(dicarboximide) dimers on a redox-inactive triptycene scaffold. Phys. Chem. Chem. Phys. 16, 23735–23742 (2014).

    CAS  PubMed  Google Scholar 

  25. Liu, H. et al. Synthesis and photophysical properties of a ‘face-to-face’ stacked tetracene dimer. Phys. Chem. Chem. Phys. 17, 6523–6531 (2015).

    CAS  PubMed  Google Scholar 

  26. Zirzlmeier, J. et al. Singlet fission in pentacene dimers. Proc. Natl Acad. Sci. USA 112, 5325–5330 (2015).

    CAS  PubMed  Google Scholar 

  27. Sanders, S. N. et al. Quantitative intramolecular singlet fission in bipentacenes. J. Am. Chem. Soc. 137, 8965–8972 (2015).

    CAS  PubMed  Google Scholar 

  28. Lukman, S. et al. Tuneable singlet exciton fission and triplet–triplet annihilation in an orthogonal pentacene dimer. Adv. Funct. Mater. 25, 5452–5461 (2015).

    CAS  Google Scholar 

  29. Korovina, N. V. et al. Singlet fission in a covalently linked cofacial alkynyltetracene dimer. J. Am. Chem. Soc. 138, 617–627 (2016).

    CAS  PubMed  Google Scholar 

  30. Greyson, E. C., Vura-Weis, J., Michl, J. & Ratner, M. A. Maximizing singlet fission in organic dimers: theoretical investigation of triplet yield in the regime of localized excitation and fast coherent electron transfer. J. Phys. Chem. B 114, 14168–14177 (2010).

    CAS  PubMed  Google Scholar 

  31. Scholes, G. D. Correlated pair states formed by singlet fission and exciton–exciton annihilation. J. Phys. Chem. A 119, 12699–12705 (2015).

    CAS  PubMed  Google Scholar 

  32. Monahan, N. & Zhu, X. Y. Charge transfer-mediated singlet fission. Annu. Rev. Phys. Chem. 66, 601–618 (2015).

    CAS  PubMed  Google Scholar 

  33. Bakulin, A. A. et al. Real-time observation of multiexcitonic states in ultrafast singlet fission using coherent 2D electronic spectroscopy. Nature Chem. 8, 16–23 (2016).

    CAS  Google Scholar 

  34. Holtrup, F. O. et al. Terrylenimides: new NIR fluorescent dyes. Chem. Eur. J. 3, 219–225 (1997).

    CAS  PubMed  Google Scholar 

  35. Kasha, M., Rawls, H. R. & El-Bayoumi, M. A. The exciton model in molecular spectroscopy. Pure Appl. Chem. 11, 371–392 (1965).

    CAS  Google Scholar 

  36. Settels, V., Liu, W., Pflaum, J., Fink, R. F. & Engels, B. Comparison of the electronic structure of different perylene-based dye-aggregates. J. Comput. Chem. 33, 1544–1553 (2012).

    CAS  PubMed  Google Scholar 

  37. Lee, S. K. et al. Electrochemistry, spectroscopy and electrogenerated chemiluminescence of perylene, terrylene, and quaterrylene diimides in aprotic solution. J. Am. Chem. Soc. 121, 3513–3520 (1999).

    CAS  Google Scholar 

  38. Giaimo, J. M., Gusev, A. V. & Wasielewski, M. R. Excited-state symmetry breaking in cofacial and linear dimers of a green perylenediimide chlorophyll analogue leading to ultrafast charge separation. J. Am. Chem. Soc. 124, 8530–8531 (2002).

    CAS  PubMed  Google Scholar 

  39. Vauthey, E. Photoinduced symmetry-breaking charge separation. Chem. Phys. Chem. 13, 2001–2011 (2012).

    CAS  PubMed  Google Scholar 

  40. Teichen, P. E. & Eaves, J. D. A microscopic model of singlet fission. J. Phys. Chem. B 116, 11473–11481 (2012).

    CAS  PubMed  Google Scholar 

  41. Zimmerman, P. M., Bell, F., Casanova, D. & Head-Gordon, M. Mechanism for singlet fission in pentacene and tetracene: from single exciton to two triplets. J. Am. Chem. Soc. 133, 19944–19952 (2011).

    CAS  PubMed  Google Scholar 

  42. Zeng, T., Hoffmann, R. & Ananth, N. The low-lying electronic states of pentacene and their roles in singlet fission. J. Am. Chem. Soc. 136, 5755–5764 (2014).

    CAS  PubMed  Google Scholar 

  43. Berkelbach, T. C., Hybertsen, M. S. & Reichman, D. R. Microscopic theory of singlet exciton fission. II. Application to pentacene dimers and the role of superexchange. J. Chem. Phys. 138, 114103 (2013).

    PubMed  Google Scholar 

  44. Chan, W.-L. et al. The quantum coherent mechanism for singlet fission: experiment and theory. Acc. Chem. Res. 46, 1321–1329 (2013).

    CAS  PubMed  Google Scholar 

  45. Beljonne, D., Yamagata, H., Brédas, J. L., Spano, F. C. & Olivier, Y. Charge-transfer excitations steer the Davydov splitting and mediate singlet exciton fission in pentacene. Phys. Rev. Lett. 110, 226402 (2013).

    CAS  PubMed  Google Scholar 

  46. Yost, S. R. et al. A transferable model for singlet-fission kinetics. Nature Chem. 6, 492–497 (2014).

    CAS  Google Scholar 

  47. Casanova, D. Electronic structure study of singlet fission in tetracene derivatives. J. Chem. Theory Comput. 10, 324–334 (2014).

    CAS  PubMed  Google Scholar 

  48. Young, R. M. et al. Ultrafast conformational dynamics of electron transfer in ExBox4+ perylene. J. Phys. Chem. A 117, 12438–12448 (2013).

    CAS  PubMed  Google Scholar 

  49. Greenfield, S. R. & Wasielewski, M. R. Near-transform-limited visible and near-IR femtosecond pulses from optical parametric amplification using type II β-barium borate. Opt. Lett. 20, 1394–1396 (1995).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Sciences, US Department of Energy (DOE) under Grant No. DE-FG02-99ER14999 (M.R.W.). The authors thank R. D. Schaller for performing phosphorescence measurements. G.C.S. was supported by the Argonne-Northwestern Solar Energy Research (ANSER) Center, an Energy Frontier Research Center funded by the Office of Science, Office of Basic Energy Sciences, US DOE, under award number DE-SC0001059.

Author information

Authors and Affiliations

Authors

Contributions

E.A.M. synthesized the molecules, analysed the data and prepared the manuscript, C.E.M. acquired the fsTA data and performed the computational studies, Y.W. performed the redox titration experiments, L.M. performed the TRF measurements, R.M.Y. analysed the fsTA data. G.C.S. directed the computational modelling. M.R.W. designed the experiments, directed the investigations and prepared the manuscript with contributions from all the authors; all the authors contributed to discussions.

Corresponding author

Correspondence to Michael R. Wasielewski.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Margulies, E., Miller, C., Wu, Y. et al. Enabling singlet fission by controlling intramolecular charge transfer in π-stacked covalent terrylenediimide dimers. Nature Chem 8, 1120–1125 (2016). https://doi.org/10.1038/nchem.2589

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2589

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing